첫 번째 커밋

This commit is contained in:
javamon
2025-12-06 22:28:22 +09:00
commit 4c263e7866
21 changed files with 9733 additions and 0 deletions

141
.gitignore vendored Normal file
View File

@@ -0,0 +1,141 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
__pycache__
/__pycache__
__pycache__/
chart/
/chart
build/
/build
.idea
/.idea
.idea/
venv
/venv
venv/
.Python
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
StrategyCandlePattern.html
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/

1041
__strategy.py Normal file

File diff suppressed because it is too large Load Diff

482
backtest.py Normal file
View File

@@ -0,0 +1,482 @@
import sys, time, random, os
import json
# load strategy
# from strategies.indicator import StrategyIndicator
from backtesting import Backtest # short-tp error
# load functions
# from indicator_util import get_indicators_values
from signal_helper import *
# load db
from db import DB
from itertools import combinations
from datetime import datetime
from dateutil.relativedelta import relativedelta
# from trade.candle import CandlePatterns
import warnings
from time import sleep
from strategy import StrategyCandlePattern
from multiprocessing import Process, freeze_support
import gc
warnings.filterwarnings(action='ignore')
_db = DB()
# set config
start_time = time.time()
top_cash = 0
top_profit = 20
top_win_rate = 90
# best_pattern_arr = []
# [0, 0.23, 0.38, 0.5, 0.61, 0.78, 0.88, 1]
# pivonachi
profit_arr = [0] + pivo(25)
loss_arr = [0] + pivo(25)
# 시그널 보조 지표
base_indicators = [
{'HEI': None},
{'RSI_DIV': 14},
{'MFI_DIV': 14},
{'CCI_DIV': 20},
{'WILLR_DIV': 28},
{'RSI': 14},
{'BBANDS': [20, 2]},
{'BBANDS': [34, 2]},
{'CCI': 14},
{'AROON': 14},
{'SAR': [0.00252, 0.22]},
{'AROONOSC': 14},
{'BOP': 14},
{'CCI': 20},
{'MFI': 14},
{'MOM': 10},
{'MOM': 14},
{'ROC': 9},
{'ROC': 14},
{'WILLR': 14},
]
# 시그널 주도 지표(필터링될 지표)
signal_indicators = [
{'STOCH_DIV': [14, 1, 1]},
{'STOCH_DIV': [14, 3, 3]},
# {'STOCH_DIV': [20, 12, 12]},
{'STOCHRSI_DIV': [14, 14, 3]},
{'CMO_DIV': 14},
{'CCI_DIV': 14},
{'ADX_DIV': 14},
{'BOP_DIV': 0},
{'OBV_DIV': 0},
{'MOM_DIV': 10},
{'ROC_DIV': 14},
{'ROC_DIV': 9},
{'STOCH_DIV': [14, 3, 14]},
{'STOCH_DIV': [14, 3, 5]},
{'ADOSC_DIV': [3, 10]},
{'ULTOSC_DIV': [7, 14, 28]},
{'TRIX': [14, 9]},
{'STOCH': [20, 12, 12]},
{'STOCH': [14, 3, 14]},
{'STOCH': [14, 3, 5]},
{'DMI': 14},
{'DI': 21},
{'APO': [10, 20]},
{'MACD': [12, 26, 9]},
{'MACDFIX': 26},
{'MACDFIX': 9},
{'MACDFIX': 14},
{'MACDFIX': 31},
{'PPO': [12, 26, 9]},
{'STOCHF': [14, 3]},
{'STOCHRSI': [14, 14, 3]},
{'ULTOSC': [7, 14, 28]},
{'EMA': 30},
{'EMA': 55},
{'DEMA': 55},
{'DEMA': 100},
{'DEMA': 200},
{'MA': 21},
{'MA': 55},
{'MA': 100},
{'MAMA': [0.5, 0.05]},
{'T3': [100, 10]},
{'TRIMA': 30},
{'TRIMA': 50},
{'WMA': 30},
{'WMA': 20},
]
'''
# for test
# base_indicators = [{'RSI': 14}, {'BBANDS': [34, 2]}, {'CCI': 20}, {'MFI': 14}, {'MOM': 14}]
# signal_indicators = [{'STOCH_DIV': [14, 3, 3]}, {'ROC_DIV': 14}, {'STOCH_DIV': [14, 3, 5]}]
data = _db.get_price_data_from_item_table('crypto/bithumb/KRW-BTC/day', '6_M')
df = pd.DataFrame(data)
df.set_index(df['date'], inplace=True)
data_columns_init(df)
df.index.name = str('crypto/bithumb/KRW-BTC/day').replace('/', '_')
StrategyCandlePattern.use_indicators = [{'HEI': None}]
StrategyCandlePattern.up_target = float(0)
StrategyCandlePattern.down_target = float(0)
bt = Backtest(df, StrategyCandlePattern, cash=cash, commission=commission)
bt.run()
print(bt._results)
bt.plot()
sys.exit(1)
'''
# multi Treading - item
def simulrating_by_item(item, data, all_indicators, idx, t_time):
# from guppy.heapy import RM # for monitoring
global start_time
# global _db
_db = DB()
cash = 1000
commission = .005
print('작업 시작 : %s / 지표 수 : %s / 시간프레임 : %s' % (item['job'], idx, t_time))
# get top_profit and win rate from item-t_time
top_info = _db.select_top_date(item['job'])
min_profit = 22
if str(item['trade_type']) == 'double':
min_profit = 30
if top_info['profit_rate'] is None:
global top_profit
global top_win_rate
else:
top_profit = float(top_info['profit_rate'])
top_win_rate = float(top_info['win_rate'])
# bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
for indicators in list(combinations(all_indicators, idx)):
for profit in profit_arr:
for loss in loss_arr:
# if str(item['trade_type']) == 'double' and loss > 0 and profit == 0: # 숏 포지션 목표가만 있을 시 에러
# continue
# if str(item['trade_type']) == 'double' and (loss != 0 or profit != 0):
# continue
StrategyCandlePattern.use_indicators = list(indicators)
StrategyCandlePattern.up_target = float(profit)
StrategyCandlePattern.down_target = float(loss)
StrategyCandlePattern.trade_type = str(item['trade_type'])
bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
bt.run()
# 수익 및 거래 수 제한
if bt._results['# Trades'] >= 5 and bt._results['Return [%]'] > min_profit and \
(bt._results['Return [%]'] > top_profit or float(bt._results['Win Rate [%]']) >= 100):
filename = 'chart/' + str(item['job']).replace('/', '_') + '_' + str(t_time) + '_' + str(
time.time())
_db.insert_simul_result(
{
'item': str(item['job']).replace('/', '_'),
'time_type': t_time,
'results': bt._results,
'stop_profit': profit,
'stop_loss': loss,
'use_patterns': json.dumps(StrategyCandlePattern.use_indicators),
'use_pattern_cnt': len(StrategyCandlePattern.use_indicators),
'filename': filename,
'period_cycle': item['period_cycle'],
'trade_type': item['trade_type'],
})
if bt._results['Return [%]'] > top_profit:
top_profit = bt._results['Return [%]']
# print('-' * 60)
# print('트레이딩 종류 :', item['trade_type'])
# print('시간봉 :', t_time)
# print('지표 조합 개수 :', idx)
# print('지표 :', StrategyCandlePattern.use_indicators)
# print("적용된 스탑프로핏 : %0.2f%%" % profit)
# print("적용된 스탑로스 : %0.2f%%" % loss)
# print("총 수익률 : %0.2f%%" % bt._results['Return [%]'])
# print("최종 금액 : %0.2f" % bt._results['Equity Final [$]'])
# print("거래 수 :", bt._results['# Trades'])
# print("파일명 :", filename)
# print('-' * 60)
# bt.plot()
if bt._results['Return [%]'] > 50 and float(
bt._results['Win Rate [%]']) >= 100: # 최상의 수익인 경우 차트 저장
bt.plot(filename=filename, open_browser=False)
del [[filename]]
if bt._results['Win Rate [%]'] >= top_win_rate:
top_win_rate = bt._results['Win Rate [%]']
# best_pattern_arr.append({
# 't_time': t_time,
# 'indicators': indicators,
# 'profit': profit,
# 'loss': loss,
# 'return': bt._results['Return [%]'],
# 'trades': bt._results['# Trades'],
# })
bt = None
del [[bt]]
gc.collect()
e = int(time.time() - start_time)
print('(완료) 조합 지표 개수 :', idx, t_time, '{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))
print(datetime.now())
del [[cash, commission, top_info, _db]]
# del [[item, data, all_indicators, idx, t_time]]
gc.collect()
# multi Treading - fackage
def simulrating_by_item_fackage(item, data, t_time):
global start_time
global base_indicators
global signal_indicators
global _db
# _db = DB()
cash = 1000
commission = .005
top_info = _db.select_top_date(item['job'])
min_profit = 17
if str(item['trade_type']) == 'double':
min_profit = 17
if top_info['profit_rate'] is None:
global top_profit
global top_win_rate
else:
top_profit = float(top_info['profit_rate'])
top_win_rate = float(top_info['win_rate'])
# bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
filtered_signal_indicators = []
for indicator in signal_indicators:
for profit in profit_arr:
for loss in loss_arr:
# if str(item['trade_type']) == 'double' and loss > 0 and profit == 0: # 숏 포지션 목표가만 있을 시 에러
# continue
# if str(item['trade_type']) == 'double' and (loss != 0 or profit != 0):
# continue
# for test
# StrategyCandlePattern.use_indicators = [{"WMA": 30}, {"EMA": 30}, {"STOCHF": [14, 3]}]
StrategyCandlePattern.use_indicators = [indicator]
StrategyCandlePattern.up_target = float(profit)
StrategyCandlePattern.down_target = float(loss)
StrategyCandlePattern.trade_type = str(item['trade_type'])
bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
bt.run()
# 수익 및 거래 수 제한
if float(bt._results['Return [%]']) > min_profit and float(bt._results['# Trades']) >= 5:
if indicator not in filtered_signal_indicators:
filtered_signal_indicators.append(indicator)
# if float(bt._results['Return [%]']) > top_profit or float(bt._results['Win Rate [%]']) >= 60:
# filename = 'chart/' + str(item['job']).replace('/', '_') + '_' + str(t_time) + '_' + str(
# time.time())
# 단일 지표 미사용
# _db.insert_simul_result(
# {
# 'item': str(item['job']).replace('/', '_'),
# 'time_type': t_time,
# 'results': bt._results,
# 'stop_profit': profit,
# 'stop_loss': loss,
# 'use_patterns': json.dumps(StrategyCandlePattern.use_indicators),
# 'use_pattern_cnt': len(StrategyCandlePattern.use_indicators),
# 'filename': filename,
# 'period_cycle': item['period_cycle'],
# 'trade_type': item['trade_type'],
# })
# if bt._results['Return [%]'] > top_profit:
# top_profit = bt._results['Return [%]']
# if bt._results['Win Rate [%]'] > top_win_rate:
# top_win_rate = bt._results['Win Rate [%]']
# bt.plot(filename=filename, open_browser=False)
# best_pattern_arr.append({
# 't_time': t_time,
# 'indicators': [indicator],
# 'profit': profit,
# 'loss': loss,
# 'return': bt._results['Return [%]'],
# 'trades': bt._results['# Trades'],
# })
bt = None
del [[bt]]
# 총 32개 이하로 유지
filtered_signal_indicators = filtered_signal_indicators[:12]
e = int(time.time() - start_time)
print('시그널 지표 필터링 완료 :', '{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))
print('지표 총합 :', len(filtered_signal_indicators) + len(base_indicators))
print('필터 지표 리스트', filtered_signal_indicators)
if len(filtered_signal_indicators) < 2:
print(item, t_time, '- 수익 모델 조건을 만족하는 전략이 없습니다.')
return
all_indicators = filtered_signal_indicators[::-1] + base_indicators
joined = []
for idx in range(2, 5):
_p = Process(target=simulrating_by_item, args=(item, data, all_indicators, idx, t_time,))
_p.start()
joined.append(_p)
del [[item, data, all_indicators, idx, t_time, cash, commission, top_info]]
gc.collect()
# 프로세스 조인
for _p in joined:
_p.join()
# multi Treading - time
def simulrating_by_time(item, t_time):
global _db
'''
"day": "24H",
"hour12": "12H",
"hour6": "06H",
"hour": "01H",
"minute30": "30M",
"minute10": "10M",
"minute5": "05M",
"minute3": "03M",
'''
data = _db.get_price_data_from_item_table(item['job'], item['period_cycle'])
df = pd.DataFrame(data)
# date = df['date'].copy()
# 최소 데이터 기준 일자 조건문(2달)
std_date = datetime.now() - relativedelta(months=2)
if df['date'][0] > std_date:
del [[df]]
return
df.set_index(df['date'], inplace=True)
data_columns_init(df)
df.index.name = str(item['job']).replace('/', '_')
if t_time != 'hour' and t_time != 'day':
time_type = {
'hour': '60min',
'hour2': '120min',
'hour4': '240min',
'hour6': '360min',
'hour12': '720min',
# 'week': 'W',
# 'month': 'M',
}
ohlc_dict = {
'Open': 'first',
'High': 'max',
'Low': 'min',
'Close': 'last',
'Volume': 'sum'
}
# df = df.resample(time_type[t_time], how=ohlc_dict, label='left', base=180) # UTC (트레이딩뷰)
df = df.resample(time_type[t_time], how=ohlc_dict, label='left', base=540) # UTC (트레이딩뷰)
df = df[:-1]
simulrating_by_item_fackage(item, df, t_time)
df = None
del [[df]]
def is_bot_by_exchange_name(item):
target = item['job'].split('/')
return _db.is_bot_by_exchange_name(target[1])
# reboot for windows
def reboot():
print('재부팅 예약 되었습니다.', datetime.now())
return os.system("shutdown -t 60 -r -f")
def record_item_per_time():
# 테이블 생성해서 쓰고 지우기
print('record_item_per_time')
print(os.path.expanduser())
def start_backtest():
global _db
print('Started Simulating.', datetime.now())
zzz = True
for item in _db.get_cron_list():
# 이미 작동중인 봇이 있을 경우 제외 - 거래소 기준
if is_bot_by_exchange_name(item):
continue
if item['time_unit'] == 'hour':
for t_time in ['hour6']: # 6시간봉만 시뮬레이팅
# for t_time in ['hour6', 'hour4']: # 4시간, 6시간봉 시뮬레이팅
if _db.is_simulated_item_per_hour(item['job'], t_time):
continue
simulrating_by_time(item, t_time)
# 타임프레임 시뮬레이터 상태 임시 저장
_db.insert_item_from_simul_item_per_hour(item['job'], t_time)
return reboot()
# 타임프레임 시뮬레이터 상태 삭제
_db.remove_item_from_simul_item_per_hour(item['job'])
_db.update_simul_init_value(item['job'])
return reboot()
simulrating_by_time(item, item['time_unit'])
_db.update_simul_init_value(item['job'])
return reboot()
if zzz:
print('There is no list of items to run.', datetime.now())
time.sleep(43400)
return reboot()
if __name__ == '__main__':
freeze_support()
start_backtest()

304
backtest.pyx Normal file
View File

@@ -0,0 +1,304 @@
import sys, time, random, os
# load strategy
# from strategies.indicator import StrategyIndicator
from backtesting import Backtest
# load functions
from indicator_util import get_indicators_values
from signal_helper import *
# Exchange API
import pybithumb
from itertools import combinations
from datetime import datetime
from trade.candle import CandlePatterns
import warnings
# from threading import Thread
from time import sleep
from strategy import StrategyCandlePattern
from multiprocessing import Process, freeze_support
from multiprocessing import Pool
import multiprocessing
import psutil
warnings.filterwarnings(action='ignore')
# set config
start_time = time.time()
cash = 1000
commission = .005
top_cash = 0
top_profit = 25
top_win_rate = 60
best_pattern_arr = []
# pivonachi
profit_arr = [0] + pivo(100)
loss_arr = [0] + pivo(10)
# 시그널 보조 지표
base_indicators = [
{'RSI_DIV': 14},
{'MFI_DIV': 14},
{'CMO_DIV': 9},
{'CCI_DIV': 20},
{'WILLR_DIV': 28},
{'RSI': 14},
{'BBANDS': [20, 2]},
{'BBANDS': [34, 2]},
{'CCI': 14},
{'AROON': 14},
{'SAR': [0.00252, 0.22]},
{'AROONOSC': 14},
{'BOP': 14},
{'CCI': 20},
{'MFI': 14},
{'MOM': 10},
{'MOM': 14},
{'ROC': 9},
{'ROC': 14},
{'WILLR': 14},
]
# 시그널 주도 지표(필터링될 지표)
signal_indicators = [
{'STOCH_DIV': [14, 3, 3]},
{'STOCH_DIV': [14, 1, 1]},
# {'STOCH_DIV': [20, 12, 12]},
{'STOCHRSI_DIV': [14, 14, 3]},
{'CMO_DIV': 14},
{'CCI_DIV': 14},
{'ADX_DIV': 14},
{'BOP_DIV': 0},
{'OBV_DIV': 0},
{'MOM_DIV': 10},
{'ROC_DIV': 14},
{'ROC_DIV': 9},
{'STOCH_DIV': [14, 3, 14]},
{'STOCH_DIV': [14, 3, 5]},
{'ADOSC_DIV': [3, 10]},
{'ULTOSC_DIV': [7, 14, 28]},
{'TRIX': [14, 9]},
{'STOCH': [20, 12, 12]},
{'STOCH': [14, 3, 14]},
{'STOCH': [14, 3, 5]},
{'DMI': 14},
{'DI': 21},
{'APO': [10, 20]},
{'MACD': [12, 26, 9]},
{'MACDFIX': 26},
{'MACDFIX': 9},
{'MACDFIX': 14},
{'MACDFIX': 31},
{'PPO': [12, 26, 9]},
{'STOCHF': [14, 3]},
{'STOCHRSI': [14, 14, 3]},
{'ULTOSC': [7, 14, 28]},
{'EMA': 30},
{'EMA': 55},
{'DEMA': 55},
{'DEMA': 100},
{'DEMA': 200},
{'MA': 21},
{'MA': 55},
{'MA': 100},
{'MAMA': [0.5, 0.05]},
{'T3': [100, 10]},
{'TRIMA': 30},
{'TRIMA': 50},
{'WMA': 30},
{'WMA': 20},
]
# for test
# base_indicators = [{'RSI': 14}, {'BBANDS': [34, 2]}, {'CCI': 20}, {'MFI': 14}, {'MOM': 14}]
# signal_indicators = [{'STOCH_DIV': [14, 3, 3]}, {'ROC_DIV': 14}, {'STOCH_DIV': [14, 3, 5]}]
# multi Treading - item
def simulrating_by_item(item, data, all_indicators, idx, t_time):
# def simulrating_by_item(data):
global top_profit
global top_win_rate
global start_time
global cash
global commission
for indicators in list(combinations(all_indicators, idx)):
for profit in profit_arr:
for loss in loss_arr:
StrategyCandlePattern.use_indicators = list(indicators)
StrategyCandlePattern.up_target = float(profit)
StrategyCandlePattern.down_target = float(loss)
bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
bt.run()
# 수익 및 거래 수 제한
if bt._results['Return [%]'] > top_profit and bt._results['# Trades'] > 5:
print('-' * 60)
print('시간봉 :', t_time)
print('지표 조합 개수 :', idx)
print('지표 :', StrategyCandlePattern.use_indicators)
print("적용된 스탑프로핏 : %0.2f%%" % profit)
print("적용된 스탑로스 : %0.2f%%" % loss)
print("총 수익률 : %0.2f%%" % bt._results['Return [%]'])
print("최종 금액 : %0.2f" % bt._results['Equity Final [$]'])
print("거래 수 :", bt._results['# Trades'])
print("파일명 :", str(item)+'_'+str(t_time)+'_'+str(idx)+'_'+str(time.time()))
print('-' * 60)
# bt.plot(filename=str(item)+'_'+str(t_time)+'_'+str(idx)+'_'+str(time.time()))
top_profit = bt._results['Return [%]']
best_pattern_arr.append({
't_time': t_time,
'indicators': indicators,
'profit': profit,
'loss': loss,
'return': bt._results['Return [%]'],
'trades': bt._results['# Trades'],
})
del bt
e = int(time.time() - start_time)
print('(완료) 조합 지표 개수 :', idx, t_time, '{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))
print(datetime.now())
# multi Treading - fackage
def simulrating_by_item_fackage(item, data, t_time):
global top_profit
global top_win_rate
global start_time
global base_indicators
global signal_indicators
global cash
global commission
filtered_signal_indicators = []
for indicator in signal_indicators:
for profit in profit_arr:
for loss in loss_arr:
StrategyCandlePattern.use_indicators = [indicator]
StrategyCandlePattern.up_target = float(profit)
StrategyCandlePattern.down_target = float(loss)
bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
bt.run()
# 수익 및 거래 수 제한
if bt._results['Return [%]'] > 15 and bt._results['# Trades'] > 5:
if indicator not in filtered_signal_indicators:
filtered_signal_indicators.append(indicator)
if bt._results['Return [%]'] > top_profit:
print('-' * 60)
print('시간봉 :', t_time)
print('지표 조합 개수 :', 1)
print('지표 :', StrategyCandlePattern.use_indicators)
print("적용된 스탑프로핏 : %0.2f%%" % profit)
print("적용된 스탑로스 : %0.2f%%" % loss)
print("총 수익률 : %0.2f%%" % bt._results['Return [%]'])
print("최종 금액 : %0.2f" % bt._results['Equity Final [$]'])
print("거래 수 :", bt._results['# Trades'])
print('-' * 60)
# bt.plot()
top_profit = bt._results['Return [%]']
best_pattern_arr.append({
't_time': t_time,
'indicators': [indicator],
'profit': profit,
'loss': loss,
'return': bt._results['Return [%]'],
'trades': bt._results['# Trades'],
})
del bt
e = int(time.time() - start_time)
print('시그널 지표 필터링 완료 :', '{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))
print('지표 총합 :', len(filtered_signal_indicators) + len(base_indicators))
print('필터 지표 리스트', filtered_signal_indicators)
all_indicators = filtered_signal_indicators[::-1] + base_indicators
joined = []
for idx in range(2, 5):
# simulrating_by_item(item, data, all_indicators, idx, t_time)
# item_thread = Thread(target=simulrating_by_item, args=(item, data, all_indicators, idx, t_time,))
# item_thread.start()
# with multiprocessing.Pool(processes=psutil.cpu_count(logical=False)) as pool:
# pool = Pool(processes=4)
# func = simulrating_by_item(item, data, all_indicators, idx, t_time)
# pool.map(func)
_p = Process(target=simulrating_by_item, args=(item, data, all_indicators, idx, t_time,))
# _p.daemon = True
_p.start()
joined.append(_p)
for _p in joined:
_p.join()
del item, data, all_indicators, idx, t_time
# multi Treading - time
def simulrating_by_time(item, t_time):
'''
"day": "24H",
"hour12": "12H",
"hour6": "06H",
"hour": "01H",
"minute30": "30M",
"minute10": "10M",
"minute5": "05M",
"minute3": "03M",
'''
df = pybithumb.get_ohlcv(item, t_time) # params : 종목, 시간
# 최근 두달 데이터 = 실질
if t_time == 'hour':
df = df[-1600:]
elif t_time == 'hour6':
df = df[-266:] # 최근 두달 데이터 = 실질
elif t_time == 'hour12':
df = df[-133:] # 최근 두달 데이터 = 실질
elif t_time == 'day':
df = df[-85:] # 최근 두달 데이터 = 실질
data_columns_init(df)
data = df
simulrating_by_item_fackage(item, data, t_time)
def start_backtest():
print('Started Simulating.')
for t_time in ['hour', 'hour6', 'hour12']:
simulrating_by_time('BTC', t_time)
break
# p = Process(target=simulrating_by_time, args=('BTC', t_time,))
# p.start()
# p.join() # sync
# thread = Thread(target=simulrating_by_time, args=('BTC', t_time,))
# thread.start()
# thread.join() # 동기
print('Ended Simulating.')
if __name__ == '__main__':
freeze_support()
start_backtest()

1
becktest_with_cuda.py Normal file
View File

@@ -0,0 +1 @@
print('cuda')

194
db.py Normal file
View File

@@ -0,0 +1,194 @@
import sys
import pymysql
import json
from datetime import date, timedelta, datetime
import time
db_info = {'host': '192.168.0.2', 'port': 3306, 'user': 'javamon', 'passwd': '@Wtkdwns117424', 'db': 'oh_my_bot_admin',
'charset': 'utf8',
'max_allowed_packet': '67108864'}
class DB:
def execute(self, sql=None, data=None):
try:
res = None
if not sql is None:
connection = pymysql.connect(host=db_info['host'], port=db_info['port'], user=db_info['user'],
passwd=db_info['passwd'], db=db_info['db'],
charset=db_info['charset'],
max_allowed_packet=db_info['max_allowed_packet'],
init_command="SET SESSION time_zone='+09:00'", connect_timeout=60)
try:
with connection.cursor(pymysql.cursors.DictCursor) as cursor:
cursor.execute(sql, data)
res = cursor.fetchall()
connection.commit()
finally:
connection.close()
return res
except Exception as e:
time.sleep(2)
return self.execute(sql, data)
def select_only_one_row(self, sql):
return self.execute(sql)[0]
def select_exchage_id_by_name(self, name):
sql = "SELECT `f_id`, `id` FROM oh_my_bot_admin.exchange WHERE `name`= '%s';" % name
return self.select_only_one_row(sql)
def select_item_id_by_ids_name(self, f_i, e_i, name):
sql = "SELECT `id` FROM oh_my_bot_admin.item " \
"WHERE `f_id`= '%s' AND `e_id`= '%s' AND `name`='%s';" % (f_i, e_i, name)
return self.select_only_one_row(sql)['id']
def select_top_date(self, item):
t_name = str(item).replace('/', '_')
profit_sql = "SELECT MAX(profit_rate) FROM oh_my_bot_admin.simulation " \
"WHERE `t_table_name` = '%s';" % t_name
win_rate_sql = "SELECT MAX(win_rate) FROM oh_my_bot_admin.simulation " \
"WHERE `t_table_name` = '%s';" % t_name
profit = self.execute(profit_sql)
win_rate = self.execute(win_rate_sql)
return {
'profit_rate': profit[0]['MAX(profit_rate)'],
'win_rate': win_rate[0]['MAX(win_rate)'],
}
def isNaN(self, num):
return num != num
def insert_simul_result(self, result):
'''
`f_i` INT NOT NULL COMMENT 'finance_id',
`e_i` INT NOT NULL COMMENT 'exchage_id',
`item_id` INT NOT NULL,
`time_type` VARCHAR(100) NOT NULL COMMENT 'item data time type',
`t_table_name` VARCHAR(100) NOT NULL COMMENT 'Target item table name',
`profit_rate` FLOAT NOT NULL COMMENT 'Return(Profit) rate',
`win_rate` FLOAT NOT NULL COMMENT 'Wins rate',
`trades` INT NOT NULL,
`stop_loss` FLOAT NOT NULL,
`stop_profit` FLOAT NOT NULL,
`used_patterns` VARCHAR(255) NOT NULL COMMENT 'used indicator and patterns',
`file_name` VARCHAR(255) NULL COMMENT 'simulation result file name',
`start_date` DATETIME NOT NULL,
`end_date` DATETIME NOT NULL,
`duration_days` INT NOT NULL COMMENT 'simulation period days',
`trade_type` NULL DEFAULT 'single' COMMENT 'trade type(doubly trade)',
'''
i_info = result['item'].split('_')
ids = self.select_exchage_id_by_name(i_info[1])
item_id = self.select_item_id_by_ids_name(ids['f_id'], ids['id'], i_info[2])
s_d, days = self.get_start_date_on_hour(result['period_cycle'])
if self.isNaN(result['results']['Return [%]']) or self.isNaN(result['results']['Win Rate [%]']):
return
sql = '''
INSERT INTO `oh_my_bot_admin`.`simulation` (`f_i`, `e_i`, `item_id`,
`time_type`, `t_table_name`, `profit_rate`, `win_rate`, `trades`, `stop_loss`,
`stop_profit`, `used_patterns`, `file_name`, `start_date`, `end_date`, `duration_days`, `trade_type`)
VALUES ('%s', '%s', '%s', '%s', '%s', '%s', '%s', '%s', '%s', '%s', '%s', '%s', '%s', '%s', '%s', '%s');
''' % (ids['f_id'], ids['id'], item_id, result['time_type'], result['item'],
result['results']['Return [%]'], result['results']['Win Rate [%]'],
result['results']['# Trades'], result['stop_loss'], result['stop_profit'],
str(result['use_patterns']), result['filename'], result['results']['Start'],
result['results']['End'], days, str(result['trade_type']),
)
self.execute(sql)
def update_simul_init_value(self, job):
sql = "UPDATE `oh_my_bot_admin`.`cron` SET `init_simul` = 'Y' WHERE (`job` = '%s');" % job
self.execute(sql)
def get_cron_list(self):
# sql = "SELECT `job`, `period_cycle`, `time_unit` FROM oh_my_bot_admin.cron WHERE `type` = 'price' AND `init_simul` = 'N';"
sql = "SELECT * FROM oh_my_bot_admin.cron WHERE `type` = 'price' AND `init_simul` = 'N' ORDER BY id ASC;"
# sql = "SELECT * FROM oh_my_bot_admin.cron WHERE `type` = 'price';"
return self.execute(sql)
def get_price_data_from_item_table(self, job_name, period):
tb_name = self.job_name_convert_to_tb_name(job_name)
start_date, days = self.get_start_date_on_hour(period)
date_arr = str(start_date).split('-')
start_date = datetime(int(date_arr[0]), int(date_arr[1]), int(date_arr[2]), 1, 0, 0)
sql = "SELECT `open`, `high`, `low`, `close`, `volume`, `date` FROM " \
"oh_my_bot_admin.%s WHERE `date` >= '%s'" % (tb_name, start_date)
return self.execute(sql)
def get_start_date_on_hour(self, period='2_M'):
# for period in ['6_M', '3_M', '1_Y', '2_Y', '2_W', '3_W']:
d = str(period).split('_')
int2type = {
"W": 8,
"M": 32,
"Y": 366,
}
days = int(d[0]) * int(int2type[d[1]])
return date.today() - timedelta(days=days), days
def job_name_convert_to_tb_name(self, job_name):
b = '_'
_ = str(job_name).split('/')
_f = b.join([_[0], _[1]]).lower()
_e = b.join([_[2], _[3]]).upper()
return b.join([_f, _e]).replace('-', '_')
def is_bot_by_exchange_name(self, e_name):
sql = "SELECT id FROM oh_my_bot_admin.exchange WHERE `name` = '%s';" % e_name
res = self.execute(sql)
sql = "SELECT id FROM oh_my_bot_admin.bot WHERE `e_i`='%s' AND `status` = 'Y';" % res[0]['id']
res = self.execute(sql)
if res is ():
return False
return True
def is_simulated_item_per_hour(self, job, t_time):
sql = "SELECT * FROM oh_my_bot_admin.sumul_item_for_time " \
"WHERE `job`='%s' and `time_unit` = '%s';" % (job, t_time)
res = self.execute(sql)
if res is ():
return False
return True
def insert_item_from_simul_item_per_hour(self, job, t_time):
sql = "INSERT INTO `oh_my_bot_admin`.`sumul_item_for_time` (`job`, `time_unit`) VALUES ('%s', '%s');" % (
job, t_time)
return self.execute(sql)
def remove_item_from_simul_item_per_hour(self, job):
sql = "DELETE FROM `oh_my_bot_admin`.`sumul_item_for_time` WHERE (`job` = '%s');" % job
return self.execute(sql)

5
desktop.ini Normal file
View File

@@ -0,0 +1,5 @@
[.ShellClassInfo]
InfoTip=<EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><EFBFBD><C2B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>˴ϴ<CBB4>.
IconFile=C:\Program Files\Google\Drive\googledrivesync.exe
IconIndex=16

1649
final_backtest.py Normal file

File diff suppressed because it is too large Load Diff

1575
indicator_backtest.py Normal file

File diff suppressed because it is too large Load Diff

913
indicator_util.py Normal file
View File

@@ -0,0 +1,913 @@
from pyti import chande_momentum_oscillator
import talib, numpy, math
from signal_helper import *
from trade.candle import CandlePatterns
def get_indicators_values(t_data, indicators):
r_data = pd.DataFrame()
date = t_data.Volume # for test
close = t_data.Close
low = t_data.Low
high = t_data.High
open = t_data.Open
volume = t_data.Volume
cp = CandlePatterns()
_positive_patterns = cp.get_long_patterns()
_negative_patterns = cp.get_short_patterns()
_fence_patterns = cp.get_fence_patterns()
for p in indicators:
indicator_info = None
indicator = None
values = None
f = None
# data = []
data = [None] * len(close)
indicator, values = list(p.items())[0]
if type(values) == int:
indicator_info = indicator +"_"+ str(values)
elif type(values) == list:
indicator_info = indicator+"_"+"_".join(map(str, values))
if indicator != 'DI' and hasattr(talib, indicator):
f = getattr(talib, indicator)
if indicator is 'CDLPTN':
is_trade = None
for i in range(0, len(close)):
if t_data.Candle_pattern[i] is None:
continue
pattern, value = list(t_data.Candle_pattern[i].items())[0]
if pattern in _fence_patterns: # 중립 패턴
is_trade = is_trade_fence_pattern(pattern, value)
elif pattern in _positive_patterns: # 매수 패턴
is_trade = True
elif pattern in _negative_patterns: # 매도 패턴
is_trade = False
data[i] = is_trade
# 보조지표 추가 시작
elif indicator is 'STOCH': # 주도 지표
slowk, slowd = f(high, low, close, fastk_period=values[0],
slowk_period=values[1], slowd_period=values[2])
start = 1 + numpy.isnan(slowk).sum()
is_trade = None
for i in range(start, len(slowk)):
t_d = []
if crossover(slowk[i], slowk[i - 1], slowd[i], slowd[i - 1]) and slowd[i] < 50:
is_trade = True
elif crossover(slowd[i], slowd[i - 1], slowk[i], slowk[i - 1]) and slowd[i] > 50:
is_trade = False
data[i] = is_trade
elif indicator is 'ADX' or indicator is 'ADXR': # 베이스 지표
res_arr = f(high, low, close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
for i in range(start, len(res_arr)):
t_d = []
if res_arr[i] < 13:
t_d.append(True)
elif res_arr[i] > 45:
t_d.append(False)
data[i] = data[i] + t_d
elif indicator is 'DI': # 주도 지표
res_arr_plus = talib.PLUS_DI(high, low, close, timeperiod=values)
res_arr_minus = talib.MINUS_DI(high, low, close, timeperiod=values)
start = 1 + numpy.isnan(res_arr_plus).sum()
is_trade = None
for i in range(start, len(res_arr_plus)):
t_d = []
if crossover(res_arr_plus[i], res_arr_plus[i - 1], res_arr_minus[i], res_arr_minus[i - 1]):
is_trade = True
elif crossover(res_arr_minus[i], res_arr_minus[i - 1], res_arr_plus[i], res_arr_plus[i - 1]):
is_trade = False
data[i] = is_trade
elif indicator is 'APO': # 주도 지표
res_arr = f(close, fastperiod=values[0], slowperiod=values[1], matype=0)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
if res_arr[i] > 0:
is_trade = True
elif res_arr[i] < 0:
is_trade = False
data[i] = is_trade
if indicator is 'AROON': # 주도 지표 => 추격
aroondown, aroonup = f(high, low, timeperiod=values)
start = 1 + numpy.isnan(aroondown).sum()
is_trade = None
for i in range(start, len(aroondown)):
t_d = []
if crossover(aroonup[i], aroonup[i - 1], aroondown[i], aroondown[i - 1]):
is_trade = True
elif crossover(aroondown[i], aroondown[i - 1], aroonup[i], aroonup[i - 1]):
is_trade = False
data[i] = is_trade
elif indicator is 'AROONOSC': # 베이스 지표 - 추세
res_arr = f(high, low, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
# 0 초과 상승추세, 0 미만 하락 추세
if res_arr[i] > 0 and res_arr[i - 1] < 0:
is_trade = True
elif res_arr[i] < 0 and res_arr[i - 1] > 0:
is_trade = False
data[i] = is_trade
elif indicator is 'BOP': # 베이스 지표
res_arr = f(open, high, low, close)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
if res_arr[i] > 0 and res_arr[i - 1] < 0:
is_trade = True
elif res_arr[i] < 0 and res_arr[i - 1] > 0:
is_trade = False
data[i] = is_trade
elif indicator is 'CCI': # 베이스 지표 / 추세
res_arr = f(close, close, close, timeperiod=values)
# res_arr = f(high, low, close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
# 베이스
if res_arr[i] < -100: # 과매도 -100 / 과매수 +100
is_trade = True
elif res_arr[i] > 100:
is_trade = False
data[i] = is_trade
elif indicator is 'CMO': # 베이스 지표 / 추세 => 수치 불일치
# res_arr = f(close, timeperiod=values)
res_arr = chande_momentum_oscillator.chande_momentum_oscillator(close, values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
if res_arr[i] > 0: # 과매도 -100 / 과매수 +100
is_trade = True
elif res_arr[i] < 0:
is_trade = False
data[i] = is_trade
elif indicator is 'MACD': # 주도 지표
macd, macdsignal, macdhist = f(close,
fastperiod=values[0],
slowperiod=values[1],
signalperiod=values[2])
start = 1 + numpy.isnan(macd).sum()
is_trade = None
for i in range(start, len(macd)):
t_d = []
if crossover(macd[i], macd[i - 1], macdsignal[i], macdsignal[i - 1]):
is_trade = True
elif crossover(macdsignal[i], macdsignal[i - 1], macd[i], macd[i - 1]):
is_trade = False
data[i] = is_trade
elif indicator is 'MACDFIX': # 주도 지표
macd, macdsignal, macdhist = f(close, signalperiod=values)
start = 1 + numpy.isnan(macd).sum()
is_trade = None
for i in range(start, len(macd)):
t_d = []
if crossover(macd[i], macd[i - 1], macdsignal[i], macdsignal[i - 1]):
is_trade = True
elif crossover(macdsignal[i], macdsignal[i - 1], macd[i], macd[i - 1]):
is_trade = False
data[i] = is_trade
elif indicator is 'MFI': # 베이스 지표 / 역추세
res_arr = f(close, close, close, volume, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
# 베이스
if res_arr[i] > 20 and res_arr[i - 1] < 20:
is_trade = True
elif res_arr[i] > 80 and res_arr[i - 1] < 80:
is_trade = False
data[i] = is_trade
elif indicator is 'MOM': # 베이스 지표 / 추세
res_arr = f(close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
# 베이스
if res_arr[i] > 0 and res_arr[i - 1] < 0:
is_trade = True
elif res_arr[i] < 0 and res_arr[i - 1] > 0:
is_trade = False
data[i] = is_trade
elif indicator is 'PPO': # 주도 지표
ppo = f(close, fastperiod=values[0], slowperiod=values[1], matype=1)
ppo_slow = moving_average(ppo, values[2])
start = 1 + numpy.isnan(ppo_slow).sum()
is_trade = None
for i in range(start, len(ppo)):
t_d = []
if crossover(ppo[i], ppo[i - 1], ppo_slow[i], ppo_slow[i - 1]):
is_trade = True
elif crossover(ppo_slow[i], ppo_slow[i - 1], ppo[i], ppo[i - 1]):
is_trade = False
data[i] = is_trade
elif indicator is 'ROC': # 베이스 지표 / 추세
res_arr = f(close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
if res_arr[i] > 0 and res_arr[i - 1] < 0:
is_trade = True
elif res_arr[i] < 0 and res_arr[i - 1] > 0:
is_trade = False
data[i] = is_trade
elif indicator is 'ROCP' or indicator is 'ROCR' or indicator is 'ROCR100': # 베이스 지표 / 추세
res_arr = f(close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
for i in range(start, len(res_arr)):
t_d = []
# 베이스
if res_arr[i] > 0:
t_d.append(True)
elif res_arr[i] < 0:
t_d.append(False)
data[i] = data[i] + t_d
elif indicator is 'STOCHF': # 주도 지표
fastk, fastd = f(high, low, close, fastk_period=values[0], fastd_period=values[1], fastd_matype=0)
start = 1 + numpy.isnan(fastk).sum()
is_trade = None
for i in range(start, len(fastk)):
t_d = []
# 높은 거래 빈도로 인해 매매조건 추가
if fastd[i] < 40 and crossover(fastk[i], fastk[i - 1], fastd[i], fastd[i - 1]):
is_trade = True
elif fastd[i] > 60 and crossover(fastd[i], fastd[i - 1], fastk[i], fastk[i - 1]):
is_trade = False
data[i] = is_trade
elif indicator is 'STOCHRSI': # 주도 지표
rsi_k, rsi_d = stoch_rsi(close, values[0], values[1], values[2])
start = 1 + numpy.isnan(rsi_d).sum()
is_trade = None
for i in range(start, len(rsi_d)):
t_d = []
if rsi_k[i] < 25 and crossover(rsi_k[i], rsi_k[i - 1], rsi_d[i], rsi_d[i - 1]):
is_trade = True
elif rsi_k[i] > 75 and crossover(rsi_d[i], rsi_d[i - 1], rsi_k[i], rsi_k[i - 1]):
is_trade = False
data[i] = is_trade
elif indicator is 'TRIX': # 베이스 지표 / 역추세 => 매수/매도 시점 괜찮다
trix = f(close, timeperiod=values[0])
trix_signal = moving_average(trix, values[1])
start = 1 + numpy.isnan(trix_signal).sum()
is_trade = None
for i in range(start, len(trix_signal)):
t_d = []
if crossover(trix[i], trix[i - 1], trix_signal[i], trix_signal[i - 1]):
is_trade = True
elif crossover(trix_signal[i], trix_signal[i - 1], trix[i], trix[i - 1]):
is_trade = False
data[i] = is_trade
elif indicator is 'ULTOSC': # 주도 지표
res_arr = f(high, low, close, timeperiod1=values[0], timeperiod2=values[1], timeperiod3=values[2])
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
if res_arr[i] < 30:
is_trade = True
elif res_arr[i] > 70:
is_trade = False
data[i] = is_trade
elif indicator is 'WILLR': # 베이스 지표 => 강세장에서 효과를 발휘
res_arr = f(high, low, close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
# print(date[i], res_arr[i])
if res_arr[i] > -20:
is_trade = True
elif res_arr[i] < -80:
is_trade = False
data[i] = is_trade
elif indicator is 'BBANDS': # 베이스 지표 / 역추세
upperband, middleband, lowerband = f(close, timeperiod=values[0], nbdevup=values[1], nbdevdn=values[1],
matype=0)
start = 1 + numpy.isnan(upperband).sum()
is_trade = None
for i in range(start, len(upperband)):
t_d = []
if high[i] > upperband[i] and upperband[i] > upperband[i - 1] and low[i] > middleband[i]:
is_trade = True
elif low[i] < lowerband[i] and lowerband[i] < lowerband[i - 1] and high[i] < middleband[i]:
is_trade = False
data[i] = is_trade
elif indicator is 'EMA' or \
indicator is 'DEMA' or \
indicator is 'MA' or \
indicator is 'SMA': # 주도 지표 / 추세
res_arr = f(close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
if close[i] > res_arr[i]:
is_trade = True
elif close[i] < res_arr[i]:
is_trade = False
data[i] = is_trade
elif indicator is 'MAMA': # 주도 지표 / 추세
mama, fama = f(close, fastlimit=values[0], slowlimit=values[1])
start = 1 + numpy.isnan(mama).sum()
is_trade = None
for i in range(start, len(mama)):
t_d = []
if mama[i] > fama[i]:
is_trade = True
elif mama[i] < fama[i]:
is_trade = False
data[i] = is_trade
elif indicator is 'MIDPOINT': # 주도 지표 => 추세
res_arr = f(close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
for i in range(start, len(res_arr)):
t_d = []
if close[i] > res_arr[i]:
t_d.append(True)
elif close[i] < res_arr[i]:
t_d.append(False)
data[i] = data[i] + t_d
elif indicator is 'MIDPRICE': # 주도 지표 => 추세
res_arr = f(high, low, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
for i in range(start, len(res_arr)):
t_d = []
if close[i] > res_arr[i]:
t_d.append(True)
elif close[i] < res_arr[i]:
t_d.append(False)
data[i] = data[i] + t_d
elif indicator is 'SAR': # 주도 지표 => 역추세
res_arr = f(high, low, acceleration=values[0], maximum=values[1])
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
if close[i] > res_arr[i] and close[i - 1] < res_arr[i - 1]:
is_trade = True
elif res_arr[i] > close[i] and res_arr[i - 1] < close[i - 1]:
is_trade = False
data[i] = is_trade
elif indicator is 'T3': # indicator is 'WMA': # 주도 지표 => 추세
long = f(close, timeperiod=values[0])
short = f(close, timeperiod=values[1])
start = 1 + numpy.isnan(long).sum()
is_trade = None
for i in range(start, len(long)):
t_d = []
if short[i] > long[i]:
is_trade = True
elif short[i] < long[i]:
is_trade = False
data[i] = is_trade
elif indicator is 'TRIMA' or indicator is 'WMA': # 주도 지표 => 추세
res_arr = f(close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
if close[i] > res_arr[i]:
is_trade = True
elif close[i] < res_arr[i]:
is_trade = False
data[i] = is_trade
elif indicator is 'AD': # 베이스 지표 - 거래량
res_arr = f(high, low, close, volume)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
# 가격-거래량 반비례 => 추세 반전
if close[i] > close[i - 1] and res_arr[i] < res_arr[i - 1]:
is_trade = False
elif close[i] < close[i - 1] and res_arr[i] > res_arr[i - 1]:
is_trade = False
data[i] = is_trade
elif indicator is 'ADOSC_DIV': # 베이스 지표 - 거래량
res_arr = talib.ADOSC(high, low, close, volume, fastperiod=values[0], slowperiod=values[1])
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
is_divergence = is_divergence_v2(i, high, low, res_arr, date)
if is_divergence is True:
is_trade = True
elif is_divergence is False:
is_trade = False
data[i] = is_trade
elif indicator is 'DMI': # 주도 지표 - 추세(추매)
adx = talib.ADX(high, low, close, timeperiod=values)
plus_di = talib.PLUS_DI(high, low, close, timeperiod=values)
minus_di = talib.MINUS_DI(high, low, close, timeperiod=values)
start = 1 + numpy.isnan(adx).sum()
is_trade = None
for i in range(start, len(adx)):
t_d = []
if adx[i] > adx[i - 1]:
if plus_di[i] > minus_di[i] and adx[i] > minus_di[i]:
is_trade = True
elif minus_di[i] > minus_di[i - 1]:
is_trade = False
data[i] = is_trade
elif indicator is 'OBV': # 베이스 지표 / 역추세
res_arr = f(close, volume)
cdl_cnt = 20
start = 1 + numpy.isnan(res_arr).sum()
if start < cdl_cnt:
start = cdl_cnt
for i in range(start, len(res_arr)):
t_d = []
# 고가 갱신 시 매도 / 저가 갱신 시 매수
if res_arr[i] > max(res_arr[i - cdl_cnt:i]):
t_d.append(False)
elif res_arr[i] < min(res_arr[i - cdl_cnt:i]):
t_d.append(True)
data[i] = is_trade
elif indicator is 'RSI': # 베이스 지표
res_arr = f(close, values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
if res_arr[i] < 30:
is_trade = True
elif res_arr[i] > 70:
is_trade = False
data[i] = is_trade
elif indicator is 'RSI_DIV': # 주도 지표 / 역추세 - 다이버전스
f = getattr(talib, 'RSI')
res_arr = f(close, values)
cdl_cnt = 100
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
if start < cdl_cnt:
start = cdl_cnt
for i in range(start, len(res_arr)):
t_d = []
is_divergence = is_divergence_v2(i, high, low, res_arr, date)
if is_divergence is True and res_arr[i - 1] < 50:
is_trade = True
elif is_divergence is False and res_arr[i - 1] > 50:
is_trade = False
data[i] = is_trade
if indicator is 'OBV_DIV':
f = getattr(talib, 'OBV')
res_arr = f(close, volume)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
i = i - 1
is_divergence = is_divergence_v2(i, high, low, res_arr, date)
if is_divergence is True:
is_trade = True
elif is_divergence is False:
is_trade = False
data[i] = is_trade
if indicator is 'WILLR_DIV':
f = getattr(talib, 'WILLR')
res_arr = f(high, low, close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
i = i - 1
is_divergence = is_divergence_v2(i, high, low, res_arr, date)
if is_divergence is True and res_arr[i - 1] < -50:
is_trade = True
elif is_divergence is False and res_arr[i - 1] > -50:
is_trade = False
data[i] = is_trade
if indicator is 'ADX_DIV':
f = getattr(talib, 'ADX')
res_arr = f(high, low, close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
i = i - 1
is_divergence = is_divergence_v2(i, high, low, res_arr, date)
if is_divergence is True:
is_trade = True
elif is_divergence is False:
is_trade = False
data[i] = is_trade
if indicator is 'BOP_DIV':
f = getattr(talib, 'BOP')
res_arr = f(open, high, low, close)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
i = i - 1
is_divergence = is_divergence_v2(i, high, low, res_arr, date)
if is_divergence is True:
is_trade = True
elif is_divergence is False:
is_trade = False
data[i] = is_trade
if indicator is 'CCI_DIV':
f = getattr(talib, 'CCI')
res_arr = f(high, low, close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
i = i - 1
is_divergence = is_divergence_v2(i, high, low, res_arr, date)
if is_divergence is True and res_arr[i - 1] < -100:
is_trade = True
elif is_divergence is False and res_arr[i - 1] > 100:
is_trade = False
data[i] = is_trade
if indicator is 'MFI_DIV':
f = getattr(talib, 'MFI')
res_arr = f(close, close, close, volume, timeperiod=values)
# res_arr = f(high, low, close, volume, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
i = i - 1
is_divergence = is_divergence_v2(i, high, low, res_arr, date)
# is_divergence = is_divergence_v3(i, close, res_arr, date)
if is_divergence is True and res_arr[i - 1]:
is_trade = True
elif is_divergence is False and res_arr[i - 1]:
is_trade = False
data[i] = is_trade
''' CMO 지표 수치 불일치 '''
if indicator is 'CMO_DIV':
res_arr = chande_momentum_oscillator.chande_momentum_oscillator(close, 9)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
i = i - 1
is_divergence = is_divergence_v2(i, high, low, res_arr, date)
if is_divergence is True and res_arr[i - 1] < 0:
is_trade = True
elif is_divergence is False and res_arr[i - 1] > 0:
is_trade = False
data[i] = is_trade
if indicator is 'MOM_DIV':
f = getattr(talib, 'MOM')
res_arr = f(close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
i = i - 1
is_divergence = is_divergence_v2(i, high, low, res_arr, date)
if is_divergence is True: # and res_arr[i-1] < 0:
is_trade = True
elif is_divergence is False: # and res_arr[i-1] > 0:
is_trade = False
data[i] = is_trade
if indicator is 'ROC_DIV':
f = getattr(talib, 'ROC')
res_arr = f(close, timeperiod=values)
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
i = i - 1
is_divergence = is_divergence_v2(i, high, low, res_arr, date)
if is_divergence is True: # and round(res_arr[i-1]) < 0:
is_trade = True
elif is_divergence is False: # and round(res_arr[i-1]) > 0:
is_trade = False
data[i] = is_trade
if indicator is 'STOCH_DIV':
f = getattr(talib, 'STOCH')
# res_arr, slowd = f(high, low, close,
slowk, res_arr = f(high, low, close,
fastk_period=values[0],
slowk_period=values[1],
slowd_period=values[2])
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
i = i - 1
is_divergence = is_divergence_v2(i, high, low, res_arr, date)
if is_divergence is True: # and round(res_arr[i-1]) < 0:
is_trade = True
elif is_divergence is False: # and round(res_arr[i-1]) > 0:
is_trade = False
data[i] = is_trade
if indicator is 'STOCHRSI_DIV':
rsi_k, res_arr = stoch_rsi(close, values[0], values[1], values[2])
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
i = i - 1
is_divergence = is_divergence_v3(i, close, res_arr, date)
if is_divergence is True:
is_trade = True
elif is_divergence is False:
is_trade = False
data[i] = is_trade
elif indicator is 'ULTOSC_DIV': # 주도 지표
res_arr = talib.ULTOSC(high, low, close, timeperiod1=values[0], timeperiod2=values[1],
timeperiod3=values[2])
start = 1 + numpy.isnan(res_arr).sum()
is_trade = None
for i in range(start, len(res_arr)):
t_d = []
is_divergence = is_divergence_v2(i, high, low, res_arr, date)
if is_divergence is True: # and round(res_arr[i-1]) < 0:
is_trade = True
elif is_divergence is False: # and round(res_arr[i-1]) > 0:
is_trade = False
data[i] = is_trade
elif indicator == 'HEI': # heikenashi
df = pd.DataFrame(
{'open': open, 'high': high, 'low': low, 'close': close, 'volume': volume},
).copy()
res_arr = heikin_ashi(df)
is_trade = None
for i in range(1, len(res_arr)):
t_d = []
if res_arr.loc[i]['close'] > res_arr.loc[i]['open'] and \
res_arr.loc[i - 1]['open'] > res_arr.loc[i - 1]['close']:
is_trade = True
elif res_arr.loc[i]['open'] > res_arr.loc[i]['close'] and \
res_arr.loc[i - 1]['close'] > res_arr.loc[i - 1]['open']:
is_trade = False
t_d.append(is_trade)
data[i] = data[i] + t_d
r_data[indicator_info] = data
return r_data

364
new_backtest.py Normal file
View File

@@ -0,0 +1,364 @@
import sys, time, random, os
import json
# load strategy
from backtesting import Backtest # short-tp error
# load functions
from signal_helper import *
# load db
from db import DB
from itertools import combinations
from datetime import datetime
from dateutil.relativedelta import relativedelta
from strategy import StrategyCandlePattern
from multiprocessing import Process, freeze_support
import gc
class Simulator:
_db = DB()
data = None
# set config
top_cash = 0
top_profit = 20
top_win_rate = 60
# best_pattern_arr = []
cash = float(1000)
commission = float(.005)
# set strategy
strategy = StrategyCandlePattern
# [0, 0.23, 0.38, 0.5, 0.61, 0.78, 0.88, 1]
# pivonachi
profit_arr = [0] + pivo(25)
loss_arr = [0] + pivo(25)
filtered_signal_indicators = []
# 시그널 보조 지표
base_indicators = [
{'HEI': None},
{'RSI_DIV': 14},
{'MFI_DIV': 14},
{'CCI_DIV': 20},
{'WILLR_DIV': 28},
{'RSI': 14},
{'BBANDS': [20, 2]},
{'BBANDS': [34, 2]},
{'CCI': 14},
{'AROON': 14},
{'SAR': [0.00252, 0.22]},
{'AROONOSC': 14},
{'BOP': 14},
{'CCI': 20},
{'MFI': 14},
{'MOM': 10},
{'MOM': 14},
{'ROC': 9},
{'ROC': 14},
{'WILLR': 14},
]
# 시그널 주도 지표(필터링될 지표)
signal_indicators = [
{'STOCH_DIV': [14, 1, 1]},
{'STOCH_DIV': [14, 3, 3]},
# {'STOCH_DIV': [20, 12, 12]},
{'STOCHRSI_DIV': [14, 14, 3]},
{'CMO_DIV': 14},
{'CCI_DIV': 14},
{'ADX_DIV': 14},
{'BOP_DIV': 0},
{'OBV_DIV': 0},
{'MOM_DIV': 10},
{'ROC_DIV': 14},
{'ROC_DIV': 9},
{'STOCH_DIV': [14, 3, 14]},
{'STOCH_DIV': [14, 3, 5]},
{'ADOSC_DIV': [3, 10]},
{'ULTOSC_DIV': [7, 14, 28]},
{'TRIX': [14, 9]},
{'STOCH': [20, 12, 12]},
{'STOCH': [14, 3, 14]},
{'STOCH': [14, 3, 5]},
{'DMI': 14},
{'DI': 21},
{'APO': [10, 20]},
{'MACD': [12, 26, 9]},
{'MACDFIX': 26},
{'MACDFIX': 9},
{'MACDFIX': 14},
{'MACDFIX': 31},
{'PPO': [12, 26, 9]},
{'STOCHF': [14, 3]},
{'STOCHRSI': [14, 14, 3]},
{'ULTOSC': [7, 14, 28]},
{'EMA': 30},
{'EMA': 55},
{'DEMA': 55},
{'DEMA': 100},
{'DEMA': 200},
{'MA': 21},
{'MA': 55},
{'MA': 100},
{'MAMA': [0.5, 0.05]},
{'T3': [100, 10]},
{'TRIMA': 30},
{'TRIMA': 50},
{'WMA': 30},
{'WMA': 20},
]
def run(self):
print('Started Simulating.', datetime.now())
zzz = True
for item in self._db.get_cron_list():
# 이미 작동중인 봇이 있을 경우 제외 - 거래소 기준
if self.is_bot_by_exchange_name(item):
continue
if item['time_unit'] == 'hour':
for t_time in ['hour6', 'hour4']: # 4시간, 6시간봉 시뮬레이팅
self.simulrating_by_time(item, t_time)
self._db.update_simul_init_value(item['job'])
return self.reboot()
self.simulrating_by_time(item, item['time_unit'])
self._db.update_simul_init_value(item['job'])
return self.reboot()
if zzz:
print('There is no list of items to run.', datetime.now())
time.sleep(43200)
return self.reboot()
# multi Treading - item
def simulrating_by_item(self, item, all_indicators, idx, t_time):
start_time = self.get_this_time()
print('작업 시작 : %s / 지표 수 : %s / 시간프레임 : %s' % (item['job'], idx, t_time))
# get top_profit and win rate from item-t_time
top_info = self._db.select_top_date(item['job'])
min_profit = 17
if str(item['trade_type']) == 'double':
min_profit = 35
# bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
for indicators in list(combinations(all_indicators, idx)):
for profit in self.profit_arr:
for loss in self.loss_arr:
# if str(item['trade_type']) == 'double' and loss > 0 and profit == 0: # 숏 포지션 목표가만 있을 시 에러
# continue
# if str(item['trade_type']) == 'double' and (loss != 0 or profit != 0):
# continue
self.strategy.use_indicators = list(indicators)
self.strategy.up_target = float(profit)
self.strategy.down_target = float(loss)
self.strategy.trade_type = str(item['trade_type'])
bt = Backtest(self.data, self.strategy, cash=self.cash, commission=self.commission)
bt.run()
# 수익 및 거래 수 제한
if bt._results['# Trades'] >= 5 and bt._results['Return [%]'] > min_profit and \
(bt._results['Return [%]'] > self.top_profit or float(bt._results['Win Rate [%]']) >= 100):
filename = 'chart/' + str(item['job']).replace('/', '_') + '_' + str(t_time) + '_' + str(
time.time())
self._db.insert_simul_result(
{
'item': str(item['job']).replace('/', '_'),
'time_type': t_time,
'results': bt._results,
'stop_profit': profit,
'stop_loss': loss,
'use_patterns': json.dumps(self.strategy.use_indicators),
'use_pattern_cnt': len(self.strategy.use_indicators),
'filename': filename,
'period_cycle': item['period_cycle'],
'trade_type': item['trade_type'],
})
if bt._results['Return [%]'] > self.top_profit:
self.top_profit = bt._results['Return [%]']
# print('-' * 60)
# print('트레이딩 종류 :', item['trade_type'])
# print('시간봉 :', t_time)
# print('지표 조합 개수 :', idx)
# print('지표 :', self.strategy.use_indicators)
# print("적용된 스탑프로핏 : %0.2f%%" % profit)
# print("적용된 스탑로스 : %0.2f%%" % loss)
# print("총 수익률 : %0.2f%%" % bt._results['Return [%]'])
# print("최종 금액 : %0.2f" % bt._results['Equity Final [$]'])
# print("거래 수 :", bt._results['# Trades'])
# print("파일명 :", filename)
# print('-' * 60)
# bt.plot()
if bt._results['Return [%]'] > 40 and float(
bt._results['Win Rate [%]']) >= 80: # 최상의 수익인 경우 차트 저장
bt.plot(filename=filename, open_browser=False)
del [[filename]]
if bt._results['Win Rate [%]'] >= top_win_rate:
top_win_rate = bt._results['Win Rate [%]']
# best_pattern_arr.append({
# 't_time': t_time,
# 'indicators': indicators,
# 'profit': profit,
# 'loss': loss,
# 'return': bt._results['Return [%]'],
# 'trades': bt._results['# Trades'],
# })
bt = None
del [[bt]]
gc.collect()
e = int(time.time() - start_time)
print('(완료) 조합 지표 개수 :', idx, t_time, '{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))
print(datetime.now())
gc.collect()
# multi Treading - fackage
def simulrating_by_item_fackage(self, item, t_time):
start_time = self.get_this_time()
top_info = self._db.select_top_date(item['job'])
min_profit = 7
if str(item['trade_type']) == 'double':
min_profit = 16
for indicator in self.signal_indicators:
for profit in self.profit_arr:
for loss in self.loss_arr:
self.strategy.use_indicators = [indicator]
self.strategy.up_target = float(profit)
self.strategy.down_target = float(loss)
self.strategy.trade_type = str(item['trade_type'])
bt = Backtest(self.data, self.strategy, cash=self.cash, commission=self.commission)
bt.run()
# 수익 및 거래 수 제한
if float(bt._results['Return [%]']) > min_profit and float(bt._results['# Trades']) >= 5:
if indicator not in self.filtered_signal_indicators:
self.filtered_signal_indicators.append(indicator)
bt = None
del [[bt]]
e = int(time.time() - start_time)
print('시그널 지표 필터링 완료 :', '{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))
print('지표 총합 :', len(self.filtered_signal_indicators) + len(self.base_indicators))
print('필터 지표 리스트', self.filtered_signal_indicators)
if len(self.filtered_signal_indicators) < 2:
print(item, t_time, '- 수익 모델 조건을 만족하는 전략이 없습니다.')
return
all_indicators = self.filtered_signal_indicators[::-1] + self.base_indicators
joined = []
for idx in range(2, 5):
_p = Process(target=self.simulrating_by_item, args=(item, all_indicators, idx, t_time,))
_p.start()
joined.append(_p)
# 프로세스 조인
for _p in joined:
_p.join()
def simulrating_by_time(self, item, t_time):
self.top_profit = 20
self.top_win_rate = 60
'''
"day": "24H",
"hour12": "12H",
"hour6": "06H",
"hour": "01H",
"minute30": "30M",
"minute10": "10M",
"minute5": "05M",
"minute3": "03M",
'''
data = self._db.get_price_data_from_item_table(item['job'], item['period_cycle'])
df = pd.DataFrame(data)
# date = df['date'].copy()
# 최소 데이터 기준 일자 조건문(2달)
std_date = datetime.now() - relativedelta(months=2)
if df['date'][0] > std_date:
del [[df]]
return
df.set_index(df['date'], inplace=True)
data_columns_init(df)
df.index.name = str(item['job']).replace('/', '_')
if t_time != 'hour' and t_time != 'day':
time_type = {
'hour': '60min',
'hour2': '120min',
'hour4': '240min',
'hour6': '360min',
'hour12': '720min',
# 'week': 'W',
# 'month': 'M',
}
ohlc_dict = {
'Open': 'first',
'High': 'max',
'Low': 'min',
'Close': 'last',
'Volume': 'sum'
}
# df = df.resample(time_type[t_time], how=ohlc_dict, label='left', base=540)
df = df.resample(time_type[t_time], label='left', base=540).agg(ohlc_dict)
df = df[:-1]
self.data = df
self.simulrating_by_item_fackage(item, t_time)
self.data = None
def get_this_time(self):
return time.time()
def is_bot_by_exchange_name(self, item):
target = item['job'].split('/')
return self._db.is_bot_by_exchange_name(target[1])
# reboot for windows
def reboot(self):
print('재부팅 예약 되었습니다.')
return os.system("shutdown -t 60 -r -f")
if __name__ == '__main__':
b = Simulator()
b.run()

335
power_backtest.py Normal file
View File

@@ -0,0 +1,335 @@
from backtesting import Backtest, Strategy
from backtesting.lib import crossover
from backtesting.test import SMA, GOOG
import sys
import talib, numpy, time, random
from itertools import product, combinations
import pybithumb
class CandlePatterns:
# 매수 패턴
_positive_patterns = [
'CDL3STARSINSOUTH', # Three Stars In The South
'CDL3WHITESOLDIERS', # 적삼병
'CDLCONCEALBABYSWALL',
'CDLDRAGONFLYDOJI',
'CDLLADDERBOTTOM',
'CDLMORNINGDOJISTAR',
'CDLMORNINGSTAR',
'CDLTAKURI',
'CDLHAMMER',
]
# 매도 패턴
_negative_patterns = ['CDLEVENINGDOJISTAR', # 석별형
'CDL2CROWS', # 2봉 까마귀형
'CDL3BLACKCROWS', # 흑삼병
'CDLADVANCEBLOCK', # 블록형 : 매수 탄력 약화, 고점에서 경고 패턴
'CDLDARKCLOUDCOVER',
'CDLEVENINGDOJISTAR',
'CDLEVENINGSTAR',
'CDLGRAVESTONEDOJI',
'CDLHANGINGMAN',
'CDLIDENTICAL3CROWS',
'CDLINNECK',
'CDLHOMINGPIGEON',
'CDLMATCHINGLOW',
'CDLONNECK',
'CDLSHOOTINGSTAR',
'CDLUPSIDEGAP2CROWS',
'CDLINVERTEDHAMMER',
]
# 중립 패턴
_fence_patterns = ['CDL3INSIDE',
'CDL3LINESTRIKE',
'CDL3OUTSIDE',
'CDLABANDONEDBABY',
'CDLBELTHOLD', # 상승/하락 샅바형
'CDLBREAKAWAY',
'CDLCLOSINGMARUBOZU',
'CDLCOUNTERATTACK',
'CDLCONCEALBABYSWALL',
'CDLENGULFING',
'CDLGAPSIDESIDEWHITE',
'CDLHARAMI',
'CDLHARAMICROSS',
# 'CDLHIGHWAVE', # 꼬리나 머리털이 길때
'CDLHIKKAKE',
'CDLHIKKAKEMOD',
'CDLKICKING',
'CDLKICKINGBYLENGTH',
# 'CDLLONGLEGGEDDOJI', # Long Legged Doji
# 'CDLLONGLINE', # Long Line Candle
# 'CDLMARUBOZU', # Marubozu
'CDLMATHOLD',
'CDLPIERCING',
# 'CDLRICKSHAWMAN ', # 그냥 도지임
# 'CDLSHORTLINE', # Short Line Candle 5:5
'CDLRISEFALL3METHODS',
'CDLSEPARATINGLINES',
# 'CDLSPINNINGTOP', # 그냥 도지임
'CDLSTALLEDPATTERN',
'CDLTASUKIGAP',
# 'CDLTHRUSTING', # 지속형
# 'CDLTRISTAR', # 이 패턴은 거의 안나옴 추세 반전 패턴
'CDLUNIQUE3RIVER',
'CDLXSIDEGAP3METHODS',
]
# 역 중립 패턴(음봉때 진입, 양봉때 탈출)
_r_fence_patterns = ['CDLSTICKSANDWICH',
]
def get_fence_patterns(self):
return self._fence_patterns
def get_r_fence_patterns(self):
return self._r_fence_patterns
# 중복 제거
def get_trade_patterns(self):
return self._negative_patterns + self._positive_patterns
def get_long_patterns(self):
return self._positive_patterns
def get_short_patterns(self):
return self._negative_patterns
class StrategyCandlePattern(Strategy):
_use_patterns = None
pattern_data = None
_sl_percent = 0.03 # 2%
# 캔들 패턴
cp = CandlePatterns()
# 매수 패턴
_positive_patterns = cp.get_long_patterns()
_negative_patterns = cp.get_short_patterns()
_fence_patterns = cp.get_fence_patterns()
_r_fence_patterns = cp.get_r_fence_patterns()
def init(self):
close = self.data.Close
low = self.data.Low
high = self.data.High
open = self.data.Open
data = [None] * len(self.data.Close)
for p in self._use_patterns:
f = getattr(talib, p)
res_arr = f(open, high, low, close)
# 100 is plus candle / -100 is minus candle
for i in range(0, len(res_arr)):
# print(p, res_arr[i])
if int(res_arr[i]) is not 0:
data[i] = {p : int(res_arr[i])}
self.pattern_data = data
def next(self):
idx = (self._broker._i)-1
# 스탑 로스 = 현재가격 - (현재가격*0.03) => 2퍼센트 스탑로스
if self.pattern_data[idx] is not None:
pattern, value = list(self.pattern_data[idx].items())[0]
sl = self.data.Close[-1] - (self.data.Close[-1] * self._sl_percent)
if pattern in self._positive_patterns: # 매수 패턴
if not self.orders.is_long:
self.buy(sl=sl)
elif pattern in self._negative_patterns: # 매도 패턴
if self.orders.is_long:
self.position.close()
elif pattern in self._fence_patterns: # 중립 패턴
if int(value) > 0:
if not self.orders.is_long:
self.buy(sl=sl)
elif int(value) < 0:
if self.orders.is_long:
self.position.close()
# self.sell()
elif pattern in self._r_fence_patterns: # 역중립 패턴(역 추세)
if int(value) > 0:
if self.orders.is_long:
self.position.close()
# self.sell()
elif int(value) < 0:
if not self.orders.is_long:
self.buy(sl=sl)
def data_columns_init(data):
# data.reset_index(level=0, inplace=True)
t_col = []
for c in data.columns:
t_col.append(c.lower().capitalize())
data.columns = t_col
start_time = time.time()
'''
"day": "24H",
"hour12": "12H",
"hour6": "06H",
"hour": "01H",
"minute30": "30M",
"minute10": "10M",
"minute5": "05M",
"minute3": "03M",
'''
df = pybithumb.get_ohlcv('BTC', 'hour') # params : 종목, 시간
df = df[:-1]
data_columns_init(df)
df = df[-1440:] # 최근 두달 데이터
cash = 1000
commission = .005
top_profit = 0
top_cash = 0
data = df # GOOG
# for test
count = 0
cp = CandlePatterns()
fence_patterns = cp.get_fence_patterns() + cp.get_r_fence_patterns()
trade_patterns = cp.get_trade_patterns()
filtered_patterns = []
long_patterns = cp.get_long_patterns()
short_patterns = cp.get_short_patterns()
# 베스트 패턴
best_patterns = ['CDLUNIQUE3RIVER', 'CDLSHOOTINGSTAR', 'CDL3BLACKCROWS', 'CDL3STARSINSOUTH', 'CDLXSIDEGAP3METHODS', 'CDLHARAMI', 'CDLGRAVESTONEDOJI', 'CDLONNECK', 'CDLDARKCLOUDCOVER', 'CDLEVENINGDOJISTAR']
StrategyCandlePattern._use_patterns = best_patterns
bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
bt.run()
if bt._results['Return [%]'] > top_profit:
top_profit = bt._results['Return [%]']
top_cash = bt._results['Equity Final [$]']
print("최종 금액 : %0.2f" % bt._results['Equity Final [$]'])
print("총 수익률 : %0.2f%%" % bt._results['Return [%]'])
print('-' * 60)
bt.plot()
# 랜덤 픽
while True:
r_long_patterns = random.choices(long_patterns, k=random.randrange(1, len(long_patterns)))
r_short_patterns = random.choices(short_patterns, k=random.randrange(1, len(short_patterns)))
r_fence_patterns = random.choices(fence_patterns, k=random.randrange(0, len(fence_patterns)))
filtered_patterns = list(set(r_long_patterns + r_short_patterns + r_fence_patterns))
StrategyCandlePattern._use_patterns = filtered_patterns
bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
bt.run()
if bt._results['Return [%]'] > top_profit:
top_profit = bt._results['Return [%]']
top_cash = bt._results['Equity Final [$]']
print("최종 금액 : %0.2f" % bt._results['Equity Final [$]'])
print("총 수익률 : %0.2f%%" % bt._results['Return [%]'])
print(StrategyCandlePattern._use_patterns)
print('-' * 60)
bt.plot()
pass
# Filtering Trade Patterns
for pattern in list(combinations(trade_patterns, 2)):
StrategyCandlePattern._use_patterns = pattern
bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
bt.run()
# 해당 패턴이 데이터에 존재 할 경우 추가
if bt._results['Return [%]'] != 0:
filtered_patterns += pattern
filtered_patterns = list(set(filtered_patterns))
# Filtering Fence Patterns
for pattern in fence_patterns:
StrategyCandlePattern._use_patterns = [pattern]
bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
bt.run()
# 수익률, 승률, 승패 등으로 필터링 기준 조정 => 승률이 좋던가, 수익이 좋던가
if bt._results['Return [%]'] > top_profit:
top_profit = bt._results['Return [%]']
top_cash = bt._results['Equity Final [$]']
print("최종 금액 : %0.2f" % bt._results['Equity Final [$]'])
print("총 수익률 : %0.2f%%" % bt._results['Return [%]'])
print(StrategyCandlePattern._use_patterns)
print('-' * 60)
# 해당 패턴이 데이터에 존재 할 경우 추가
if bt._results['Return [%]'] != 0:
filtered_patterns.append(pattern)
# 모든 경우의 수
for index in list(range(2, len(filtered_patterns) + 1)):
# for index in list(range(len(all_patterns), len(all_patterns) + 1)):
for patterns in list(combinations(filtered_patterns, index)):
StrategyCandlePattern._use_patterns = patterns
bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
bt.run()
if count < len(StrategyCandlePattern._use_patterns):
count = len(StrategyCandlePattern._use_patterns)
print(len(StrategyCandlePattern._use_patterns))
e = int(time.time() - start_time)
print('{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))
if bt._results['Return [%]'] > top_profit:
top_profit = bt._results['Return [%]']
top_cash = bt._results['Equity Final [$]']
# print(bt._results)
print("최종 금액 : %0.2f" % bt._results['Equity Final [$]'])
print("총 수익률 : %0.2f%%" % bt._results['Return [%]'])
print(StrategyCandlePattern._use_patterns)
print('-'*60)
bt.plot()
del bt
e = int(time.time() - start_time)
print('{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))
'''
사이클 주기 : 3달?
매수/매도 패턴 쌍으로 수익 실현 횟수를 수치화 하여 확률적 접근으로? => 패턴별 승패수 = 승률제
시간봉 두달 37.62%
['CDLHOMINGPIGEON', 'CDLSHOOTINGSTAR', 'CDLRISEFALL3METHODS', 'CDLINNECK', 'CDLXSIDEGAP3METHODS', 'CDLLADDERBOTTOM', 'CDLABANDONEDBABY', 'CDL3LINESTRIKE', 'CDLTASUKIGAP', 'CDL3STARSINSOUTH']
시간봉 두달 35퍼 :
['CDL3WHITESOLDIERS', 'CDL3WHITESOLDIERS', 'CDLEVENINGDOJISTAR', 'CDL2CROWS', 'CDLSHOOTINGSTAR', 'CDLINNECK', 'CDLONNECK', 'CDLADVANCEBLOCK', 'CDLIDENTICAL3CROWS', 'CDLDARKCLOUDCOVER', 'CDLINNECK', 'CDL3LINESTRIKE', 'CDLCONCEALBABYSWALL', 'CDLXSIDEGAP3METHODS']
5분봉 일주일 6퍼 :
('CDLMORNINGDOJISTAR', 'CDLHANGINGMAN', 'CDLHIKKAKEMOD', 'CDLSEPARATINGLINES', 'CDLUNIQUE3RIVER')
- 캔들 신호에 따라 매매, 보조지표는 시그널로
- 패턴별 신뢰도 측정 => 이브닝스타 - 5봉 뒤 가격 다운(종가)
- 해당 데이터에 패턴이 있는지 체크 후 필터 리스트에 추가
- 매매 패턴은 그래도 사용하고, 보조지표 기반 시그널로 작동 => 패턴별 가중치가 다르게 => 슈팅스타 백점 등
- 보조지표를 베이스 시그널로 활용
- 시간대별로 반복문 추가
- 최대 패턴 갯수 구하기
# 매수/매도 패턴끼리 먼저 조합하여 경우의 수 도출
# 수익이 있는 캔들 패턴만 보조지표와 조합 => 중립 캔들 패턴만, 매수/매도 시그널 패턴은 그냥 조합 사용
# 패턴을 시그널로 활용(사용중인 모든 패턴이 True 일때만 매수/ False 매도로 구성) => 보류 => 보조지표를 시그널로 활용
# 봉별 단일 시그널로 활용할 지, 복합 시그널(두개 이상)로 활용 할지..
# 매매 패턴의 경우 데이터에 존재하는지 체크 후 패턴 리스트에 추가
'''

344
profile_backtest.py Normal file
View File

@@ -0,0 +1,344 @@
import sys, time, random, os
import json
# load strategy
# from strategies.indicator import StrategyIndicator
from backtesting import Backtest # short-tp error
import tracemalloc
# load functions
# from indicator_util import get_indicators_values
from signal_helper import *
# load db
from db import DB
from itertools import combinations
from datetime import datetime
from dateutil.relativedelta import relativedelta
# from trade.candle import CandlePatterns
import warnings
from time import sleep
from strategy import StrategyCandlePattern
from multiprocessing import Process, freeze_support
from cProfile import Profile
from pstats import Stats
import gc
warnings.filterwarnings(action='ignore')
_db = DB()
# set config
start_time = time.time()
top_cash = 0
top_profit = 20
top_win_rate = 60
# best_pattern_arr = []
# [0, 0.23, 0.38, 0.5, 0.61, 0.78, 0.88, 1]
# pivonachi
profit_arr = [0] + pivo(60)
loss_arr = [0] + pivo(60)
# 시그널 보조 지표
base_indicators = [
{'HEI': None},
{'RSI_DIV': 14},
{'MFI_DIV': 14},
{'CCI_DIV': 20},
{'WILLR_DIV': 28},
{'RSI': 14},
{'BBANDS': [20, 2]},
{'BBANDS': [34, 2]},
{'CCI': 14},
{'AROON': 14},
{'SAR': [0.00252, 0.22]},
{'AROONOSC': 14},
{'BOP': 14},
{'CCI': 20},
{'MFI': 14},
{'MOM': 10},
{'MOM': 14},
{'ROC': 9},
{'ROC': 14},
{'WILLR': 14},
]
# 시그널 주도 지표(필터링될 지표)
signal_indicators = [
{'STOCH_DIV': [14, 1, 1]},
{'STOCH_DIV': [14, 3, 3]},
# {'STOCH_DIV': [20, 12, 12]},
{'STOCHRSI_DIV': [14, 14, 3]},
{'CMO_DIV': 14},
{'CCI_DIV': 14},
{'ADX_DIV': 14},
{'BOP_DIV': 0},
{'OBV_DIV': 0},
{'MOM_DIV': 10},
{'ROC_DIV': 14},
{'ROC_DIV': 9},
{'STOCH_DIV': [14, 3, 14]},
{'STOCH_DIV': [14, 3, 5]},
{'ADOSC_DIV': [3, 10]},
{'ULTOSC_DIV': [7, 14, 28]},
{'TRIX': [14, 9]},
{'STOCH': [20, 12, 12]},
{'STOCH': [14, 3, 14]},
{'STOCH': [14, 3, 5]},
{'DMI': 14},
{'DI': 21},
{'APO': [10, 20]},
{'MACD': [12, 26, 9]},
{'MACDFIX': 26},
{'MACDFIX': 9},
{'MACDFIX': 14},
{'MACDFIX': 31},
{'PPO': [12, 26, 9]},
{'STOCHF': [14, 3]},
{'STOCHRSI': [14, 14, 3]},
{'ULTOSC': [7, 14, 28]},
{'EMA': 30},
{'EMA': 55},
{'DEMA': 55},
{'DEMA': 100},
{'DEMA': 200},
{'MA': 21},
{'MA': 55},
{'MA': 100},
{'MAMA': [0.5, 0.05]},
{'T3': [100, 10]},
{'TRIMA': 30},
{'TRIMA': 50},
{'WMA': 30},
{'WMA': 20},
]
# multi Treading - fackage
def simulrating_by_item_fackage(item, data, t_time):
global start_time
global base_indicators
global signal_indicators
# global _db
_db = DB()
cash = 1000
commission = .005
top_info = _db.select_top_date(item['job'])
min_profit = 7
if str(item['trade_type']) == 'double':
min_profit = 14
if top_info['profit_rate'] is None:
global top_profit
global top_win_rate
else:
top_profit = float(top_info['profit_rate'])
top_win_rate = float(top_info['win_rate'])
filtered_signal_indicators = []
for indicator in signal_indicators:
for profit in profit_arr:
for loss in loss_arr:
# if str(item['trade_type']) == 'double' and loss > 0 and profit == 0: # 숏 포지션 목표가만 있을 시 에러
# continue
# if str(item['trade_type']) == 'double' and (loss != 0 or profit != 0):
# continue
# for test
# StrategyCandlePattern.use_indicators = [{"WMA": 30}, {"EMA": 30}, {"STOCHF": [14, 3]}]
StrategyCandlePattern.use_indicators = [indicator]
StrategyCandlePattern.up_target = float(profit)
StrategyCandlePattern.down_target = float(loss)
StrategyCandlePattern.trade_type = str(item['trade_type'])
bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
bt.run()
# 수익 및 거래 수 제한
if float(bt._results['Return [%]']) > min_profit and float(bt._results['# Trades']) >= 5:
if indicator not in filtered_signal_indicators:
filtered_signal_indicators.append(indicator)
# if float(bt._results['Return [%]']) > top_profit or float(bt._results['Win Rate [%]']) >= 60:
# filename = 'chart/' + str(item['job']).replace('/', '_') + '_' + str(t_time) + '_' + str(
# time.time())
# 단일 지표 미사용
# _db.insert_simul_result(
# {
# 'item': str(item['job']).replace('/', '_'),
# 'time_type': t_time,
# 'results': bt._results,
# 'stop_profit': profit,
# 'stop_loss': loss,
# 'use_patterns': json.dumps(StrategyCandlePattern.use_indicators),
# 'use_pattern_cnt': len(StrategyCandlePattern.use_indicators),
# 'filename': filename,
# 'period_cycle': item['period_cycle'],
# 'trade_type': item['trade_type'],
# })
# if bt._results['Return [%]'] > top_profit:
# top_profit = bt._results['Return [%]']
# if bt._results['Win Rate [%]'] > top_win_rate:
# top_win_rate = bt._results['Win Rate [%]']
# bt.plot(filename=filename, open_browser=False)
# best_pattern_arr.append({
# 't_time': t_time,
# 'indicators': [indicator],
# 'profit': profit,
# 'loss': loss,
# 'return': bt._results['Return [%]'],
# 'trades': bt._results['# Trades'],
# })
bt = None
del [[bt]] # 112.3MB
gc.collect()
e = int(time.time() - start_time)
print('시그널 지표 필터링 완료 :', '{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))
print('지표 총합 :', len(filtered_signal_indicators) + len(base_indicators))
print('필터 지표 리스트', filtered_signal_indicators)
if len(filtered_signal_indicators) < 2:
print(item, t_time, '- 수익 모델 조건을 만족하는 전략이 없습니다.')
return
all_indicators = filtered_signal_indicators[::-1] + base_indicators
# multi Treading - time
def simulrating_by_time(item, t_time):
global _db
'''
"day": "24H",
"hour12": "12H",
"hour6": "06H",
"hour": "01H",
"minute30": "30M",
"minute10": "10M",
"minute5": "05M",
"minute3": "03M",
'''
data = _db.get_price_data_from_item_table(item['job'], item['period_cycle'])
df = pd.DataFrame(data)
# date = df['date'].copy()
# 최소 데이터 기준 일자 조건문(2달)
std_date = datetime.now() - relativedelta(months=2)
if df['date'][0] > std_date:
df = None
del [df]
return
df.set_index(df['date'], inplace=True)
data_columns_init(df)
df.index.name = str(item['job']).replace('/', '_')
if t_time != 'hour' and t_time != 'day':
time_type = {
'hour': '60min',
'hour2': '120min',
'hour4': '240min',
'hour6': '360min',
'hour12': '720min',
# 'week': 'W',
# 'month': 'M',
}
ohlc_dict = {
'Open': 'first',
'High': 'max',
'Low': 'min',
'Close': 'last',
'Volume': 'sum'
}
# df = df.resample(time_type[t_time], how=ohlc_dict, label='left', base=180) # UTC (트레이딩뷰)
df = df.resample(time_type[t_time], how=ohlc_dict, label='left', base=540) # UTC (트레이딩뷰)
df = df[:-1]
return simulrating_by_item_fackage(item, df, t_time)
df = None
del [df]
def is_bot_by_exchange_name(item):
target = item['job'].split('/')
return _db.is_bot_by_exchange_name(target[1])
# reboot for windows
def reboot():
return 'reboot!'
# return os.system("shutdown -t 60 -r -f")
def start_backtest():
global _db
print('Started Simulating.', datetime.now())
for item in _db.get_cron_list():
# 이미 작동중인 봇이 있을 경우 제외 - 거래소 기준
if is_bot_by_exchange_name(item):
continue
if item['time_unit'] == 'hour':
for t_time in ['hour6', 'hour4']: # 4시간, 6시간봉 시뮬레이팅
return simulrating_by_time(item, t_time)
return reboot()
simulrating_by_time(item, item['time_unit'])
return reboot()
return reboot()
if __name__ == '__main__':
tracemalloc.start()
freeze_support()
start_backtest()
# profiler = Profile()
# profiler.runcall(start_backtest)
#
# stats = Stats(profiler)
# stats.strip_dirs()
# stats.sort_stats()
# stats.print_stats()
'''
메모리 절약해주는 라이브러리 사용하기
from profile import profile
from time import sleep
from sklearn import datasets # Just an example of 3rd party function call
# Method 1
run_profiling = profile(datasets.load_digits)
data = run_profiling()
# Method 2
@profile
def my_function():
# do some stuff
a_list = []
for i in range(1,100000):
a_list.append(i)
return a_list
res = my_function()
'''

40
requirements.txt Normal file
View File

@@ -0,0 +1,40 @@
APScheduler==3.10.4
backports.zoneinfo==0.2.1
Backtesting==0.1.2
backtrader==1.9.74.123
beautifulsoup4==4.12.3
bokeh==2.4.3
bs4==0.0.2
certifi==2024.2.2
cffi==1.15.1
charset-normalizer==3.3.2
gevent==22.10.2
greenlet==3.0.3
idna==3.6
importlib-metadata==6.7.0
Jinja2==3.1.3
MarkupSafe==2.1.5
numpy==1.21.6
packaging==23.2
pandas==0.25.1
Pillow==9.5.0
pycparser==2.21
PyMySQL==1.1.0
python-dateutil==2.8.2
pyti==0.2.2
pytz==2024.1
PyYAML==6.0.1
requests==2.31.0
scipy==1.3.1
six==1.16.0
soupsieve==2.4.1
SQLAlchemy==2.0.25
tornado==6.2
typing_extensions==4.7.1
tzdata==2023.4
tzlocal==5.1
urllib3==1.25.4
websocket==0.2.1
zipp==3.15.0
zope.event==5.0
zope.interface==6.1

666
signal_helper.py Normal file
View File

@@ -0,0 +1,666 @@
import talib
import numpy as np
import pandas as pd
import sys
def data_columns_init(data):
# data.reset_index(level=0, inplace=True)
t_col = []
for c in data.columns:
t_col.append(c.lower().capitalize())
# data.reset_index(level=0, inplace=True)
# t_col.insert(0, 'Date')
data.columns = t_col
def heikin_ashi(df):
heikin_ashi_df = pd.DataFrame(index=df.index.values, columns=['open', 'high', 'low', 'close'])
heikin_ashi_df['close'] = (df['open'] + df['high'] + df['low'] + df['close']) / 4
for i in range(len(df)):
if i == 0:
heikin_ashi_df.iat[0, 0] = df['open'].iloc[0]
else:
heikin_ashi_df.iat[i, 0] = (heikin_ashi_df.iat[i - 1, 0] + heikin_ashi_df.iat[i - 1, 3]) / 2
heikin_ashi_df['high'] = heikin_ashi_df.loc[:, ['open', 'close']].join(df['high']).max(axis=1)
heikin_ashi_df['low'] = heikin_ashi_df.loc[:, ['open', 'close']].join(df['low']).min(axis=1)
return heikin_ashi_df
def get_candle_pattern_arr(data=None, use_patterns=talib.get_function_groups()['Pattern Recognition']):
if data is None:
return []
r_data = [None] * len(data.Close)
for p in use_patterns:
f = getattr(talib, p)
res_arr = f(data.Open, data.High, data.Low, data.Close)
# 100 is plus candle / -100 is minus candle
for i in range(0, len(res_arr)):
# print(p, res_arr[i])
if int(res_arr[i]) is not 0:
r_data[i] = {p: int(res_arr[i])}
return r_data
def crossover(k, pre_k, d, pre_d) -> bool:
try:
return k > d and pre_k < pre_d
except IndexError:
return False
def is_divergence(i, cdl_cnt, low, high, res_arr):
# 저가 갱신 / 지표 저점 상승 : 매수
if min(low[i - cdl_cnt:i]) < min(low[i - (cdl_cnt * 2):i - cdl_cnt + 1]) and \
min(res_arr[i - cdl_cnt:i]) > min(res_arr[i - (cdl_cnt * 2):i - cdl_cnt + 1]):
return True
# 고가 갱신 / 지표 고점 하락 : 매도
elif max(high[i - cdl_cnt:i]) > max(high[i - (cdl_cnt * 2):i - cdl_cnt + 1]) and \
max(res_arr[i - cdl_cnt:i]) < max(res_arr[i - (cdl_cnt * 2):i - cdl_cnt + 1]):
return False
def moving_average(data, n=3) :
return talib.EMA(data, timeperiod=n) # 이동평균
def stoch_rsi(data, rsi_period=14, stoch_period=14, slowk_period=3):
# rsi = talib.RSI(close, 14)
# rsi_fastd, rsi_slowd = talib.STOCH(rsi, rsi, rsi, fastk_period=14, slowk_period=3, slowd_period=3,
# slowk_matype=0, slowd_matype=0)
rsi = talib.RSI(data, rsi_period)
return talib.STOCH(rsi, rsi, rsi, fastk_period=stoch_period, slowk_period=slowk_period, slowd_period=slowk_period,
slowk_matype=0, slowd_matype=0)
def is_trade_fence_pattern(pattern, value):
p = pattern.upper()
if p == "CDL3INSIDE":
if int(value) < 0:
return True
elif int(value) > 0:
return False
elif p == "CDL3LINESTRIKE":
if int(value) < 0:
return True
elif int(value) > 0:
return False
elif p == "CDL3OUTSIDE":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLABANDONEDBABY": # no data
return None
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLBELTHOLD":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLBREAKAWAY":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLCLOSINGMARUBOZU": # 거래 빈도 높고 60퍼 이상의 확률
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLCOUNTERATTACK":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLCONCEALBABYSWALL" or p == "CDLMATHOLD":
return None
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLENGULFING":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLGAPSIDESIDEWHITE":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLHARAMI":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLHARAMICROSS":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLHIKKAKEMOD" or p == "CDLHIKKAKE":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLKICKING" or p == "CDLKICKINGBYLENGTH":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLPIERCING":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLRISEFALL3METHODS":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLSEPARATINGLINES": # 역추세로 활용 보류
return None
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLSTALLEDPATTERN": # 역추세 - 시그널
return None
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLTASUKIGAP":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLUNIQUE3RIVER": # 역추세 - 시그널
return None
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLXSIDEGAP3METHODS":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLSTICKSANDWICH":
if int(value) > 0:
return True
elif int(value) < 0:
return False
elif p == "CDLTRISTAR":
if int(value) > 0:
return True
elif int(value) < 0:
return False
return None
def get_indicators_args(indicators):
res_data = []
for i in indicators:
if i is 'RSI' or i is 'RSI_DIV': # 베이스 지표
e_range = list(range(9, 31))
# e_range = [14]
for v in e_range:
res_data.append({i: v})
# res_data = list(range(9, 31))
elif i is 'STOCH': # 주도 지표
# res_data.append({i: [5, 3, 3]})
# continue
f_range = list(range(5, 21))
for f_r in f_range:
s_range = list(range(1, f_r + 1))
for s_r in s_range:
t_range = list(range(1, s_r + 1))
for t_r in t_range:
res_data.append({i: [f_r, s_r, t_r]})
elif i is 'ADX' or i is 'ADXR' or i is 'DMI': # 베이스 지표
e_range = list(range(9, 21))
# e_range = [14]DMI
for v in e_range:
res_data.append({i: v})
elif i is 'DI': # Directional Indicator Plus/Minus # 주도 지표
e_range = list(range(9, 31))
# e_range = [14]
for v in e_range:
res_data.append({i: v})
elif i is 'APO': # 주도 지표
f_range = list(range(17, 31))
for f_r in f_range:
s_range = list(range(10, f_r + 1))
for s_r in s_range:
res_data.append({i: [s_r, f_r]})
elif i is 'AROON': # 주도 지표
e_range = list(range(11, 31))
for v in e_range:
res_data.append({i: v})
elif i is 'AROONOSC': # 베이스 지표
e_range = list(range(3, 21))
for v in e_range:
res_data.append({i: v})
elif i is 'BOP': # 베이스
res_data.append({i: None})
elif i is 'CCI': # 베이스
e_range = list(range(11, 31))
for v in e_range:
res_data.append({i: v})
elif i is 'CMO': # 베이스
e_range = list(range(9, 31))
for v in e_range:
res_data.append({i: v})
# elif i is 'DX': # 베이스 / 추세 추종
# e_range = list(range(9, 31))
# for v in e_range:
# res_data.append({i: v})
elif i is 'MACD': # 주도 지표
f_range = list(range(11, 31))
for f_r in f_range:
s_range = list(range(9, f_r + 1))
for s_r in s_range:
t_range = list(range(7, s_r + 1))
for t_r in t_range:
res_data.append({i: [s_r, f_r, t_r]})
elif i is 'MACDFIX': # 주도 지표
e_range = list(range(5, 21))
for v in e_range:
res_data.append({i: v})
elif i is 'MFI': # 베이스 / 추세
e_range = list(range(9, 31))
for v in e_range:
res_data.append({i: v})
elif i is 'MOM': # 베이스 / 역추세
e_range = list(range(9, 31))
for v in e_range:
res_data.append({i: v})
elif i is 'PPO': # 주도 지표
f_range = list(range(9, 26))
for f_r in f_range:
s_range = list(range(10, f_r + 1))
for s_r in s_range:
res_data.append({i: [s_r, f_r]})
elif i is 'ROC' or i is 'ROCP' or i is 'WILLR' or i is 'MIDPOINT' or i is 'MIDPRICE': # 베이스 지표 / 추세
e_range = list(range(9, 31))
for v in e_range:
res_data.append({i: v})
# elif i is 'ROCR':# 베이스 지표 / 추세 => 보류
# e_range = list(range(9, 31))
# for v in e_range:
# res_data.append({i: v}
# elif i is 'ROCR100':# 베이스 지표 / 추세 => 보류
# e_range = list(range(9, 31))
# for v in e_range:
# res_data.append({i: v})
elif i is 'STOCHF': # 주도 지표
f_range = list(range(5, 21))
for f_r in f_range:
s_range = list(range(3, f_r + 1))
for s_r in s_range:
res_data.append({i: [f_r, s_r]})
elif i is 'STOCHRSI': # 주도 지표
f_range = list(range(5, 21))
for f_r in f_range:
s_range = list(range(3, f_r + 1))
for s_r in s_range:
t_range = list(range(3, s_r + 1))
for t_r in t_range:
res_data.append({i: [f_r, s_r, t_r]})
elif i is 'TRIX': # 베이스 지표 / 역추세
f_range = list(range(3, 36))
for f_r in f_range:
s_range = list(range(2, f_r + 1))
for s_r in s_range:
res_data.append({i: [f_r, s_r]})
elif i is 'ULTOSC': # 주도 지표
f_range = list(range(7, 31))
for f_r in f_range:
s_range = list(range(5, f_r + 1))
for s_r in s_range:
t_range = list(range(5, s_r + 1))
for t_r in t_range:
res_data.append({i: [t_r, s_r, f_r]})
elif i is 'BBANDS': # 베이스 지표
f_range = list(range(9, 31))
for f_r in f_range:
s_range = list(range(1, f_r + 1))
for s_r in s_range:
res_data.append({i: [f_r, s_r]})
elif i is 'EMA' or i is 'DEMA' or i is 'MA' or i is 'SMA': # 주도 지표
f_range = list(range(9, 36))
for f_r in f_range:
s_range = list(range(5, f_r + 1))
for s_r in s_range:
res_data.append({i: [f_r, s_r]})
# elif i is 'KAMA': # 베이스 지표 / 추세 => 사용법 모름
# e_range = list(range(9, 36))
# for v in e_range:
# res_data.append({i: v})
elif i is 'MAMA': # 주도 지표
f_range = list(range(1, 10))
for f_r in f_range:
s_range = list(range(1, 10))
for s_r in s_range:
res_data.append({i: [f_r / 10, s_r / 100]})
# elif i is 'MAVP': # 주도 지표
# f_range = list(range(9, 36))
# for f_r in f_range:
# s_range = list(range(10, f_r+1))
# for s_r in s_range:
# res_data.append({i : [s_r, f_r]})
elif i is 'SAR': # 베이스 지표 / 역추세 => 거래 빈도만 줄이면 훌륭할 듯
e_range = list(range(1, 5))
for v in e_range:
res_data.append({i: v})
elif i is 'T3': # 주도 지표
f_range = list(range(5, 31))
for f_r in f_range:
s_range = list(range(3, f_r))
for s_r in s_range:
res_data.append({i: [f_r, s_r]})
elif i is 'TEMA' or i is 'TRIMA' or i is 'WMA': # 주도 지표
f_range = list(range(15, 41))
for f_r in f_range:
s_range = list(range(7, f_r))
for s_r in s_range:
res_data.append({i: [f_r, s_r]})
elif i is 'AD': # 베이스 지표 - 거래량
res_data.append({i: None})
elif i is 'ADOSC': # 주도 지표 - 거래량 => 추세
f_range = list(range(7, 31))
for f_r in f_range:
s_range = list(range(3, f_r))
for s_r in s_range:
res_data.append({i: [s_r, f_r]})
elif i is 'OBV' or i is 'BOP_DIV': # 베이스 지표 - 거래량 기반 상승장, 하락장 지표
res_data.append({i: None})
# 다이버전스 주도 지표 / 역추세
elif i is 'ADX_DIV' or i is 'ADXR_DIV' or i is 'AROONOSC_DIV' or i is 'CCI_DIV' or i is 'CMO_DIV' \
or i is 'MFI_DIV' or i is 'MOM_DIV' or i is 'ROC_DIV' or i is 'ROCP_DIV' or i is 'ROCR_DIV' \
or i is 'TRIX_DIV' or i is 'WILLR_DIV':
e_range = list(range(9, 31))
for v in e_range:
res_data.append({i: v})
elif i is 'STOCH_DIV':
f_range = list(range(5, 21))
for f_r in f_range:
s_range = list(range(1, f_r + 1))
for s_r in s_range:
t_range = list(range(1, s_r + 1))
for t_r in t_range:
res_data.append({i: [f_r, s_r, t_r]})
elif i is 'STOCHF_DIV':
f_range = list(range(7, 31))
for f_r in f_range:
s_range = list(range(3, f_r))
for s_r in s_range:
res_data.append({i: [f_r, s_r]})
elif i is 'STOCHRSI_DIV':
f_range = list(range(9, 14))
for f_r in f_range:
s_range = list(range(1, 5))
for s_r in s_range:
t_range = list(range(1, 5))
for t_r in t_range:
res_data.append({i: [f_r, s_r, t_r]})
return res_data
'''
def is_divergence_v4(high, low, res_arr, date, cdl_cnt=50):
m_idxs = [i for i, x in enumerate(res_arr) if
res_arr[i - 1] < res_arr[i] and res_arr[i - 1] < res_arr[i - 2]]
is_diver_long = [v for i, v in enumerate(m_idxs) if low[m_idxs[i]] < low[m_idxs[i-1]] and res_arr[m_idxs[i]] > res_arr[m_idxs[i-1]]]
m_idxs = [i for i, x in enumerate(res_arr) if
res_arr[i - 1] > res_arr[i] and res_arr[i - 1] > res_arr[i - 2]]
is_diver_short = [v for i, v in enumerate(m_idxs) if high[m_idxs[i]] > high[m_idxs[i-1]] and res_arr[m_idxs[i]] < res_arr[m_idxs[i-1]]]
'''
# 변곡점 캐치 다이버전스 함수 / 고점 및 저점 활용
def is_divergence_v2(i, high, low, res_arr, date, cdl_cnt=50):
is_rsi_min_1 = res_arr[i - 1] < res_arr[i] and res_arr[i - 1] < res_arr[i - 2]
is_rsi_max_1 = res_arr[i - 1] > res_arr[i] and res_arr[i - 1] > res_arr[i - 2]
# 상승 다이버전스
if is_rsi_min_1: # 첫번째 저점 형성
rsi_min_1 = res_arr[i - 1]
low_1 = low[i - 1]
for s_i in range(i - 3, i - cdl_cnt, -1):
# 두번째 저점 형성
is_rsi_min_2 = res_arr[s_i - 1] < res_arr[s_i] and res_arr[s_i - 1] < res_arr[s_i - 2]
if is_rsi_min_2:
rsi_min_2 = res_arr[s_i - 1]
low_2 = low[s_i - 1]
if low_1 < low_2: # 저점 갱신
if rsi_min_1 > rsi_min_2: # 지표 저점 상승
# print('매수 포지션', i, '-' * 50)
# print(date[i - 1], '=>', date[s_i - 1])
# print(low_1, '=>', low_2)
# print(rsi_min_1, '=>', rsi_min_2)
# print('현재', res_arr[i-2], '>', res_arr[i - 1], '<', res_arr[i])
# print('이전', res_arr[s_i-2], '>', res_arr[s_i - 1], '<', res_arr[s_i])
return True
return None
# 하락 다이버전스
if is_rsi_max_1:
rsi_max_1 = res_arr[i - 1]
max_1 = high[i - 1]
for s_i in range(i - 3, i - cdl_cnt, -1):
is_rsi_max_2 = res_arr[s_i - 1] > res_arr[s_i] and res_arr[s_i - 1] > res_arr[s_i - 2]
if is_rsi_max_2:
rsi_max_2 = res_arr[s_i - 1]
max_2 = high[s_i - 1]
if max_1 > max_2: # 고점갱신 갱신
if rsi_max_1 < rsi_max_2 : # 지표 고점 하락
# print('매도 포지션', i, '-'*50)
# print(date[i-1], '=>', date[s_i-1])
# print(max_1, '=>', max_2)
# print(rsi_max_1, '=>', rsi_max_2)
# print('현재',res_arr[i-2], '<', res_arr[i - 1], '>', res_arr[i])
# print('이전', res_arr[s_i-2], '<', res_arr[s_i - 1], '>', res_arr[s_i])
return False
return None
return None
# def is_divergence_v2(i, high, low, res_arr, date, cdl_cnt=50):
# is_rsi_min_1 = res_arr[i - 1] < res_arr[i] and res_arr[i - 1] < res_arr[i - 2]
# is_rsi_max_1 = res_arr[i - 1] > res_arr[i] and res_arr[i - 1] > res_arr[i - 2]
#
# if is_rsi_min_1: # 상승 다이버전스
# rsi_min_1 = res_arr[i - 1]
# low_1 = low[i - 1]
#
# for s_i in range(i - 3, i - cdl_cnt, -1):
# # 두번째 저점 형성
# is_rsi_min_2 = res_arr[s_i - 1] < res_arr[s_i] and res_arr[s_i - 1] < res_arr[s_i - 2]
#
# if is_rsi_min_2:
# rsi_min_2 = res_arr[s_i - 1]
# low_2 = low[s_i - 1]
#
# if low_1 < low_2: # 저점 갱신
# # if rsi_min_1 > rsi_min_2 and res_arr[i - 2] > res_arr[s_i - 2]: # 지표 저점 상승
# if rsi_min_1 > rsi_min_2: # 지표 저점 상승
# # print('매수 포지션', i, '-' * 50)
# # print(date[i - 1], '=>', date[s_i - 1])
# # print(low_1, '=>', low_2)
# # print(rsi_min_1, '=>', rsi_min_2)
# # print('현재', res_arr[i-2], '>', res_arr[i - 1], '<', res_arr[i])
# # print('이전', res_arr[s_i-2], '>', res_arr[s_i - 1], '<', res_arr[s_i])
# return True
# return None
#
# if is_rsi_max_1: # 하락 다이버전스
# rsi_max_1 = res_arr[i - 1]
# max_1 = high[i-1]
#
# for s_i in range(i - 3, i - cdl_cnt, -1):
# is_rsi_max_2 = res_arr[s_i - 1] > res_arr[s_i] and res_arr[s_i - 1] > res_arr[s_i - 2]
#
# if is_rsi_max_2:
# rsi_max_2 = res_arr[s_i - 1]
# max_2 = high[s_i - 1]
#
# if max_1 > max_2: # 고점갱신 갱신
# if rsi_max_1 < rsi_max_2: # 지표 고점 하락
# # print('매도 포지션', i, '-'*50)
# # print(date[i-1], '=>', date[s_i-1])
# # print(max_1, '=>', max_2)
# # print(rsi_max_1, '=>', rsi_max_2)
# # print('현재',res_arr[i-2], '<', res_arr[i - 1], '>', res_arr[i])
# # print('이전', res_arr[s_i-2], '<', res_arr[s_i - 1], '>', res_arr[s_i])
# return False
# return None
#
# return None
# 변곡점 캐치 다이버전스 함수 / 종가 활용
def is_divergence_v3(i, close, res_arr, date, cdl_cnt=50):
high = close
low = close
is_rsi_min_1 = res_arr[i - 1] < res_arr[i] and res_arr[i - 1] < res_arr[i - 2]
is_rsi_max_1 = res_arr[i - 1] > res_arr[i] and res_arr[i - 1] > res_arr[i - 2]
# 상승 다이버전스
if is_rsi_min_1:
rsi_min_1 = res_arr[i - 1]
low_1 = low[i - 1]
for s_i in range(i - 3, i - cdl_cnt, -1):
is_rsi_min_2 = res_arr[s_i - 1] < res_arr[s_i] and res_arr[s_i - 1] < res_arr[s_i - 2]
if is_rsi_min_2:
rsi_min_2 = res_arr[s_i - 1]
low_2 = low[s_i - 1]
if low_1 < low_2: # 저점 갱신
if rsi_min_1 > rsi_min_2: # 지표 저점 상승
return True
return None
# 하락 다이버전스
if is_rsi_max_1:
rsi_max_1 = res_arr[i - 1]
max_1 = high[i - 1]
for s_i in range(i - 3, i - cdl_cnt, -1):
is_rsi_max_2 = res_arr[s_i - 1] > res_arr[s_i] and res_arr[s_i - 1] > res_arr[s_i - 2]
if is_rsi_max_2:
rsi_max_2 = res_arr[s_i - 1]
max_2 = high[s_i - 1]
if max_1 > max_2: # 고점갱신 갱신
if rsi_max_2 > rsi_max_1: # 지표 고점 하락
return False
return None
return None
# get pivo percent
def pivo(n = 1000):
if n is 0:
return
pivo_arr = [0, 1]
res_arr = []
while pivo_arr[len(pivo_arr)-2] + pivo_arr[len(pivo_arr)-1] <= n:
pivo_arr.append(pivo_arr[len(pivo_arr)-2] + pivo_arr[len(pivo_arr)-1]) # for percent
# calculate percent
for pivo_val in pivo_arr[2:]:
res_arr.append(pivo_val/100)
return res_arr

5
strategies/desktop.ini Normal file
View File

@@ -0,0 +1,5 @@
[.ShellClassInfo]
InfoTip=<EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><EFBFBD><C2B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>˴ϴ<CBB4>.
IconFile=C:\Program Files\Google\Drive\googledrivesync.exe
IconIndex=16

86
strategies/indicator.py Normal file
View File

@@ -0,0 +1,86 @@
from backtesting import Strategy
from signal_helper import *
class StrategyIndicator(Strategy):
use_indicators = None
indicators_data = None
cal_data = None
# Stop Profit/Loss
up_target = None
down_target = None
data_len = None
def init(self):
self.data_len = len(self.data.Close)
self.indicators_data = pd.DataFrame()
for p in self.use_indicators:
indicator, values = list(p.items())[0]
if type(values) == int:
indicator_info = indicator +"_"+ str(values)
elif type(values) == list:
indicator_info = indicator+"_"+"_".join(map(str, values))
self.indicators_data[indicator_info] = self.cal_data[indicator_info]
def next(self):
idx = (self._broker._i) - 1
row_data = list(self.indicators_data.iloc[idx])
prev_row_data = list(self.indicators_data.iloc[idx-1])
price = self.data.Close[-1]
sl = 0
tp = 0
# 배열 동시 시그널 매매
if len(row_data) == len(self.use_indicators) and prev_row_data:
if not (None in row_data):
if all(row_data):
if self.down_target > 0:
sl = price - (price * self.down_target)
if self.up_target > 0:
tp = price + (price * self.up_target)
# only short test
# if not self.orders.is_short:
# self.position.close()
# Only Long
if len(self.use_indicators) is 1: # 단일 지표일 경우
if not self.orders.is_long and not any(prev_row_data):
if sl != 0 and tp != 0:
self.buy(sl=sl, tp=tp)
elif sl != 0:
self.buy(sl=sl)
elif tp != 0:
self.buy(tp=tp)
else:
self.buy()
elif len(self.use_indicators) > 1: # 여러 지표일 경우
if not self.orders.is_long:
if sl != 0 and tp != 0:
self.buy(sl=sl, tp=tp)
elif sl != 0:
self.buy(sl=sl)
elif tp != 0:
self.buy(tp=tp)
else:
self.buy()
elif not any(row_data):
# short test
# if self.orders.is_long is None or self.orders.is_short is False:
# self.sell(sl=r_sl, tp=sl)
# only long test
if self.orders.is_long:
self.position.close()
# 시뮬레이터 종료 시 포지션 종료
if idx == self.data_len - 2:
self.position.close()

1137
strategy.py Normal file

File diff suppressed because it is too large Load Diff

356
test_slicing.py Normal file
View File

@@ -0,0 +1,356 @@
import sys, time, random, os
# load strategy
# from strategies.indicator import StrategyIndicator
from backtesting import Backtest
# load functions
from indicator_util import get_indicators_values
from signal_helper import *
# Exchange API
import pybithumb
from itertools import combinations
from datetime import datetime
from trade.candle import CandlePatterns
import warnings
# from threading import Thread
from time import sleep
from strategy import StrategyCandlePattern
from multiprocessing import Process, freeze_support
from multiprocessing import Pool
import multiprocessing
import psutil
warnings.filterwarnings(action='ignore')
# set config
start_time = time.time()
cash = 1000
commission = .005
top_cash = 0
top_profit = 25
top_win_rate = 60
best_pattern_arr = []
# pivonachi
profit_arr = [0] + pivo(100)
loss_arr = [0] + pivo(10)
def backtest_run(
df,
StrategyCandlePattern,
indicators,
up_target=float(0),
down_target=float(0),
cash=1000,
commission=.005
):
setattr(StrategyCandlePattern, 'use_indicators', [indicators])
setattr(StrategyCandlePattern, 'up_target', float(up_target))
setattr(StrategyCandlePattern, 'down_target', float(down_target))
# StrategyCandlePattern.use_indicators = [indicators]
# StrategyCandlePattern.up_target = float(up_target)
# StrategyCandlePattern.down_target = float(down_target)
bt = Backtest(df, StrategyCandlePattern, cash=cash, commission=commission)
bt.run()
r_data = bt._results
del bt
return r_data
# 시그널 보조 지표
base_indicators = [
{'RSI_DIV': 14},
{'MFI_DIV': 14},
{'CMO_DIV': 9},
{'CCI_DIV': 20},
{'WILLR_DIV': 28},
{'RSI': 14},
{'BBANDS': [20, 2]},
{'BBANDS': [34, 2]},
{'CCI': 14},
{'AROON': 14},
{'SAR': [0.00252, 0.22]},
{'AROONOSC': 14},
{'BOP': 14},
{'CCI': 20},
{'MFI': 14},
{'MOM': 10},
{'MOM': 14},
{'ROC': 9},
{'ROC': 14},
{'WILLR': 14},
]
# 시그널 주도 지표(필터링될 지표)
signal_indicators = [
{'STOCH_DIV': [14, 3, 3]},
{'STOCH_DIV': [14, 1, 1]},
# {'STOCH_DIV': [20, 12, 12]},
{'STOCHRSI_DIV': [14, 14, 3]},
{'CMO_DIV': 14},
{'CCI_DIV': 14},
{'ADX_DIV': 14},
{'BOP_DIV': 0},
{'OBV_DIV': 0},
{'MOM_DIV': 10},
{'ROC_DIV': 14},
{'ROC_DIV': 9},
{'STOCH_DIV': [14, 3, 14]},
{'STOCH_DIV': [14, 3, 5]},
{'ADOSC_DIV': [3, 10]},
{'ULTOSC_DIV': [7, 14, 28]},
{'TRIX': [14, 9]},
{'STOCH': [20, 12, 12]},
{'STOCH': [14, 3, 14]},
{'STOCH': [14, 3, 5]},
{'DMI': 14},
{'DI': 21},
{'APO': [10, 20]},
{'MACD': [12, 26, 9]},
{'MACDFIX': 26},
{'MACDFIX': 9},
{'MACDFIX': 14},
{'MACDFIX': 31},
{'PPO': [12, 26, 9]},
{'STOCHF': [14, 3]},
{'STOCHRSI': [14, 14, 3]},
{'ULTOSC': [7, 14, 28]},
{'EMA': 30},
{'EMA': 55},
{'DEMA': 55},
{'DEMA': 100},
{'DEMA': 200},
{'MA': 21},
{'MA': 55},
{'MA': 100},
{'MAMA': [0.5, 0.05]},
{'T3': [100, 10]},
{'TRIMA': 30},
{'TRIMA': 50},
{'WMA': 30},
{'WMA': 20},
]
# for test
# base_indicators = [{'RSI': 14}, {'BBANDS': [34, 2]}, {'CCI': 20}, {'MFI': 14}, {'MOM': 14}]
# signal_indicators = [{'STOCH_DIV': [14, 3, 3]}, {'ROC_DIV': 14}, {'STOCH_DIV': [14, 3, 5]}]
# multi Treading - item
def simulrating_by_item(item, data, all_indicators, idx, t_time):
# def simulrating_by_item(data):
global top_profit
global top_win_rate
global start_time
global cash
global commission
for indicators in list(combinations(all_indicators, idx)):
for profit in profit_arr:
for loss in loss_arr:
StrategyCandlePattern.use_indicators = list(indicators)
StrategyCandlePattern.up_target = float(profit)
StrategyCandlePattern.down_target = float(loss)
bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
bt.run()
# 수익 및 거래 수 제한
if bt._results['Return [%]'] > top_profit and bt._results['# Trades'] > 5:
print('-' * 60)
print('시간봉 :', t_time)
print('지표 조합 개수 :', idx)
print('지표 :', StrategyCandlePattern.use_indicators)
print("적용된 스탑프로핏 : %0.2f%%" % profit)
print("적용된 스탑로스 : %0.2f%%" % loss)
print("총 수익률 : %0.2f%%" % bt._results['Return [%]'])
print("최종 금액 : %0.2f" % bt._results['Equity Final [$]'])
print("거래 수 :", bt._results['# Trades'])
print("파일명 :", str(item) + '_' + str(t_time) + '_' + str(idx) + '_' + str(time.time()))
print('-' * 60)
# bt.plot(filename=str(item)+'_'+str(t_time)+'_'+str(idx)+'_'+str(time.time()))
top_profit = bt._results['Return [%]']
best_pattern_arr.append({
't_time': t_time,
'indicators': indicators,
'profit': profit,
'loss': loss,
'return': bt._results['Return [%]'],
'trades': bt._results['# Trades'],
})
del bt
e = int(time.time() - start_time)
print('(완료) 조합 지표 개수 :', idx, t_time, '{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))
print(datetime.now())
# multi Treading - fackage
def simulrating_by_item_fackage(item, data, t_time):
global top_profit
global top_win_rate
global start_time
global base_indicators
global signal_indicators
global cash
global commission
filtered_signal_indicators = []
# 시그널 지표 필터링 완료 : 00:02:36
for indicator in signal_indicators:
for profit in profit_arr:
for loss in loss_arr:
res = backtest_run(
data,
StrategyCandlePattern,
indicators=indicator,
up_target=float(profit),
down_target=float(loss),
cash=cash,
commission=commission
)
# 수익 및 거래 수 제한
if res['Return [%]'] > 15 and res['# Trades'] > 5:
if indicator not in filtered_signal_indicators:
filtered_signal_indicators.append(indicator)
if res['Return [%]'] > top_profit:
print('-' * 60)
print('시간봉 :', t_time)
print('지표 조합 개수 :', 1)
print('지표 :', StrategyCandlePattern.use_indicators)
print("적용된 스탑프로핏 : %0.2f%%" % profit)
print("적용된 스탑로스 : %0.2f%%" % loss)
print("총 수익률 : %0.2f%%" % res['Return [%]'])
print("최종 금액 : %0.2f" % res['Equity Final [$]'])
print("거래 수 :", res['# Trades'])
print('-' * 60)
# bt.plot()
top_profit = res['Return [%]']
best_pattern_arr.append({
't_time': t_time,
'indicators': [indicator],
'profit': profit,
'loss': loss,
'return': res['Return [%]'],
'trades': res['# Trades'],
})
del res
e = int(time.time() - start_time)
print('시그널 지표 필터링 완료 :', '{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))
print('지표 총합 :', len(filtered_signal_indicators) + len(base_indicators))
print('필터 지표 리스트', filtered_signal_indicators)
# 02:56
sys.exit(1)
all_indicators = filtered_signal_indicators[::-1] + base_indicators
joined = []
for idx in range(2, 3):
# for idx in range(2, 5):
# simulrating_by_item(item, data, all_indicators, idx, t_time)
_p = Process(target=simulrating_by_item, args=(item, data, all_indicators, idx, t_time,))
_p.start()
joined.append(_p)
# item_thread = Thread(target=simulrating_by_item, args=(item, data, all_indicators, idx, t_time,))
# item_thread.start()
# with multiprocessing.Pool(processes=psutil.cpu_count(logical=False)) as pool:
# pool = Pool(processes=4)
# func = simulrating_by_item(item, data, all_indicators, idx, t_time)
# pool.map(func)
# for _p in joined:
# _p.join()
del item, data, all_indicators, idx, t_time
# multi Treading - time
def simulrating_by_time(item, t_time):
'''
"day": "24H",
"hour12": "12H",
"hour6": "06H",
"hour": "01H",
"minute30": "30M",
"minute10": "10M",
"minute5": "05M",
"minute3": "03M",
'''
df = pybithumb.get_ohlcv(item, t_time) # params : 종목, 시간
# 최근 두달 데이터 = 실질
if t_time == 'hour':
df = df[-1600:]
elif t_time == 'hour6':
df = df[-266:] # 최근 두달 데이터 = 실질
elif t_time == 'hour12':
df = df[-133:] # 최근 두달 데이터 = 실질
elif t_time == 'day':
df = df[-85:] # 최근 두달 데이터 = 실질
data_columns_init(df)
data = df
simulrating_by_item_fackage(item, data, t_time)
# - 반복문 만들기
# 단일 지표 필터링 반복문(스톱 로스/프로핏) => 완료
# 스톱로스, 스톱프로핏 반복문 => 완료
# 지표 조합 반복문 => 완료
# 시간봉별 반복문 => 멀티스레딩으로 진행중
# 1시간, 4시간, 6시간, 12시간 봉, 일봉 => 5개
# 멀티스레딩으로 구현 => 시간별, 조합 개수별 => 2, 3, 4, 5, 6, 7
# 멀티 프로세싱으로 구현 => 멀티 스레드와 속도비교
# 멀티 프로세싱 구현 => 완료
# 싸이썬 활용
# 위 성능 테스트 후 저조할 경우 랜덤워크로 진행.
if __name__ == '__main__':
# freeze_support()
print('Started Simulating.')
for t_time in ['hour', 'hour6', 'hour12', 'day']:
simulrating_by_time('BTC', t_time)
break
# p = Process(target=simulrating_by_time, args=('BTC', t_time,))
# p.start()
# p.join() # sync
# thread = Thread(target=simulrating_by_time, args=('BTC', t_time,))
# thread.start()
# thread.join() # 동기

90
trade/candle.py Normal file
View File

@@ -0,0 +1,90 @@
class CandlePatterns:
# Long Patterns
_positive_patterns = [
'CDL3STARSINSOUTH', # Three Stars In The South
'CDL3WHITESOLDIERS', # long
'CDLCONCEALBABYSWALL', # long - no data
# 'CDLDRAGONFLYDOJI', # long 빈도 높음
'CDLLADDERBOTTOM', # long
'CDLMORNINGDOJISTAR', # long
'CDLMORNINGSTAR', # long
'CDLADVANCEBLOCK', # long
'CDLHOMINGPIGEON', # long
# 'CDLINVERTEDHAMMER', # long # 빈도 높음
# 'CDLHAMMER', # 빈도 높음
# 'CDLTAKURI', # 빈도 높음
# 'CDLHANGINGMAN', # 빈도 높음
]
# Short Patterns
_negative_patterns = [
'CDLEVENINGDOJISTAR', # short
'CDL2CROWS', # short
'CDL3BLACKCROWS', # short
'CDLDARKCLOUDCOVER', # short
'CDLEVENINGDOJISTAR', # short
'CDLEVENINGSTAR', # short
'CDLGRAVESTONEDOJI', # short 빈도 높음
'CDLIDENTICAL3CROWS', # short
'CDLINNECK', # short
'CDLONNECK', # short
'CDLSHOOTINGSTAR', # short
'CDLUPSIDEGAP2CROWS', # short
# 'CDLMATCHINGLOW', # 6:4 short
]
# 중립 패턴
_fence_patterns = \
[
'CDL3INSIDE',
'CDL3LINESTRIKE',
'CDL3OUTSIDE',
'CDLABANDONEDBABY',
'CDLBELTHOLD', # 샅바형
'CDLBREAKAWAY',
'CDLCLOSINGMARUBOZU',
'CDLCOUNTERATTACK',
'CDLCONCEALBABYSWALL',
'CDLENGULFING',
'CDLGAPSIDESIDEWHITE',
'CDLHARAMI',
'CDLHARAMICROSS',
'CDLHIKKAKEMOD',
'CDLKICKING',
'CDLKICKINGBYLENGTH',
'CDLMATHOLD',
'CDLPIERCING',
'CDLRISEFALL3METHODS',
'CDLSEPARATINGLINES',
'CDLSTALLEDPATTERN',
'CDLTASUKIGAP',
'CDLTRISTAR',
'CDLUNIQUE3RIVER',
'CDLXSIDEGAP3METHODS',
'CDLSTICKSANDWICH',
# 'CDLHIKKAKE', # 높은 빈도
# 'CDLHIGHWAVE', # 꼬리나 머리털이 길때
# 'CDLLONGLEGGEDDOJI', # Long Legged Doji
# 'CDLLONGLINE', # Long Line Candle
# 'CDLMARUBOZU', # Marubozu
# 'CDLRICKSHAWMAN ', # 그냥 도지임
# 'CDLSHORTLINE', # Short Line Candle 5:5
# 'CDLTHRUSTING', # 지속형
# 'CDLSPINNINGTOP', # 그냥 도지임
]
def get_fence_patterns(self):
return self._fence_patterns
def get_trade_patterns(self):
return self._negative_patterns + self._positive_patterns
def get_long_patterns(self):
return self._positive_patterns
def get_short_patterns(self):
return self._negative_patterns
def get_all_patterns(self):
return self._positive_patterns + self._fence_patterns + self._negative_patterns

5
trade/desktop.ini Normal file
View File

@@ -0,0 +1,5 @@
[.ShellClassInfo]
InfoTip=<EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><EFBFBD><C2B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>˴ϴ<CBB4>.
IconFile=C:\Program Files\Google\Drive\googledrivesync.exe
IconIndex=16