357 lines
11 KiB
Python
357 lines
11 KiB
Python
import sys, time, random, os
|
|
|
|
# load strategy
|
|
# from strategies.indicator import StrategyIndicator
|
|
from backtesting import Backtest
|
|
|
|
# load functions
|
|
from indicator_util import get_indicators_values
|
|
from signal_helper import *
|
|
|
|
# Exchange API
|
|
import pybithumb
|
|
|
|
from itertools import combinations
|
|
from datetime import datetime
|
|
from trade.candle import CandlePatterns
|
|
import warnings
|
|
# from threading import Thread
|
|
from time import sleep
|
|
|
|
from strategy import StrategyCandlePattern
|
|
from multiprocessing import Process, freeze_support
|
|
from multiprocessing import Pool
|
|
import multiprocessing
|
|
import psutil
|
|
|
|
warnings.filterwarnings(action='ignore')
|
|
|
|
# set config
|
|
start_time = time.time()
|
|
cash = 1000
|
|
commission = .005
|
|
top_cash = 0
|
|
top_profit = 25
|
|
top_win_rate = 60
|
|
best_pattern_arr = []
|
|
|
|
# pivonachi
|
|
profit_arr = [0] + pivo(100)
|
|
loss_arr = [0] + pivo(10)
|
|
|
|
|
|
def backtest_run(
|
|
df,
|
|
StrategyCandlePattern,
|
|
indicators,
|
|
up_target=float(0),
|
|
down_target=float(0),
|
|
cash=1000,
|
|
commission=.005
|
|
):
|
|
setattr(StrategyCandlePattern, 'use_indicators', [indicators])
|
|
setattr(StrategyCandlePattern, 'up_target', float(up_target))
|
|
setattr(StrategyCandlePattern, 'down_target', float(down_target))
|
|
|
|
# StrategyCandlePattern.use_indicators = [indicators]
|
|
# StrategyCandlePattern.up_target = float(up_target)
|
|
# StrategyCandlePattern.down_target = float(down_target)
|
|
|
|
bt = Backtest(df, StrategyCandlePattern, cash=cash, commission=commission)
|
|
bt.run()
|
|
r_data = bt._results
|
|
|
|
del bt
|
|
|
|
return r_data
|
|
|
|
|
|
# 시그널 보조 지표
|
|
base_indicators = [
|
|
{'RSI_DIV': 14},
|
|
{'MFI_DIV': 14},
|
|
{'CMO_DIV': 9},
|
|
{'CCI_DIV': 20},
|
|
{'WILLR_DIV': 28},
|
|
{'RSI': 14},
|
|
{'BBANDS': [20, 2]},
|
|
{'BBANDS': [34, 2]},
|
|
{'CCI': 14},
|
|
{'AROON': 14},
|
|
{'SAR': [0.00252, 0.22]},
|
|
{'AROONOSC': 14},
|
|
{'BOP': 14},
|
|
{'CCI': 20},
|
|
{'MFI': 14},
|
|
{'MOM': 10},
|
|
{'MOM': 14},
|
|
{'ROC': 9},
|
|
{'ROC': 14},
|
|
{'WILLR': 14},
|
|
]
|
|
# 시그널 주도 지표(필터링될 지표)
|
|
signal_indicators = [
|
|
{'STOCH_DIV': [14, 3, 3]},
|
|
{'STOCH_DIV': [14, 1, 1]},
|
|
# {'STOCH_DIV': [20, 12, 12]},
|
|
{'STOCHRSI_DIV': [14, 14, 3]},
|
|
{'CMO_DIV': 14},
|
|
{'CCI_DIV': 14},
|
|
{'ADX_DIV': 14},
|
|
{'BOP_DIV': 0},
|
|
{'OBV_DIV': 0},
|
|
{'MOM_DIV': 10},
|
|
{'ROC_DIV': 14},
|
|
{'ROC_DIV': 9},
|
|
{'STOCH_DIV': [14, 3, 14]},
|
|
{'STOCH_DIV': [14, 3, 5]},
|
|
{'ADOSC_DIV': [3, 10]},
|
|
{'ULTOSC_DIV': [7, 14, 28]},
|
|
{'TRIX': [14, 9]},
|
|
{'STOCH': [20, 12, 12]},
|
|
{'STOCH': [14, 3, 14]},
|
|
{'STOCH': [14, 3, 5]},
|
|
{'DMI': 14},
|
|
{'DI': 21},
|
|
{'APO': [10, 20]},
|
|
{'MACD': [12, 26, 9]},
|
|
{'MACDFIX': 26},
|
|
{'MACDFIX': 9},
|
|
{'MACDFIX': 14},
|
|
{'MACDFIX': 31},
|
|
{'PPO': [12, 26, 9]},
|
|
{'STOCHF': [14, 3]},
|
|
{'STOCHRSI': [14, 14, 3]},
|
|
{'ULTOSC': [7, 14, 28]},
|
|
{'EMA': 30},
|
|
{'EMA': 55},
|
|
{'DEMA': 55},
|
|
{'DEMA': 100},
|
|
{'DEMA': 200},
|
|
{'MA': 21},
|
|
{'MA': 55},
|
|
{'MA': 100},
|
|
{'MAMA': [0.5, 0.05]},
|
|
{'T3': [100, 10]},
|
|
{'TRIMA': 30},
|
|
{'TRIMA': 50},
|
|
{'WMA': 30},
|
|
{'WMA': 20},
|
|
]
|
|
|
|
|
|
# for test
|
|
# base_indicators = [{'RSI': 14}, {'BBANDS': [34, 2]}, {'CCI': 20}, {'MFI': 14}, {'MOM': 14}]
|
|
# signal_indicators = [{'STOCH_DIV': [14, 3, 3]}, {'ROC_DIV': 14}, {'STOCH_DIV': [14, 3, 5]}]
|
|
|
|
# multi Treading - item
|
|
def simulrating_by_item(item, data, all_indicators, idx, t_time):
|
|
# def simulrating_by_item(data):
|
|
global top_profit
|
|
global top_win_rate
|
|
global start_time
|
|
global cash
|
|
global commission
|
|
|
|
for indicators in list(combinations(all_indicators, idx)):
|
|
for profit in profit_arr:
|
|
for loss in loss_arr:
|
|
StrategyCandlePattern.use_indicators = list(indicators)
|
|
StrategyCandlePattern.up_target = float(profit)
|
|
StrategyCandlePattern.down_target = float(loss)
|
|
|
|
bt = Backtest(data, StrategyCandlePattern, cash=cash, commission=commission)
|
|
bt.run()
|
|
|
|
# 수익 및 거래 수 제한
|
|
if bt._results['Return [%]'] > top_profit and bt._results['# Trades'] > 5:
|
|
print('-' * 60)
|
|
print('시간봉 :', t_time)
|
|
print('지표 조합 개수 :', idx)
|
|
print('지표 :', StrategyCandlePattern.use_indicators)
|
|
print("적용된 스탑프로핏 : %0.2f%%" % profit)
|
|
print("적용된 스탑로스 : %0.2f%%" % loss)
|
|
print("총 수익률 : %0.2f%%" % bt._results['Return [%]'])
|
|
print("최종 금액 : %0.2f" % bt._results['Equity Final [$]'])
|
|
print("거래 수 :", bt._results['# Trades'])
|
|
print("파일명 :", str(item) + '_' + str(t_time) + '_' + str(idx) + '_' + str(time.time()))
|
|
print('-' * 60)
|
|
# bt.plot(filename=str(item)+'_'+str(t_time)+'_'+str(idx)+'_'+str(time.time()))
|
|
|
|
top_profit = bt._results['Return [%]']
|
|
|
|
best_pattern_arr.append({
|
|
't_time': t_time,
|
|
'indicators': indicators,
|
|
'profit': profit,
|
|
'loss': loss,
|
|
'return': bt._results['Return [%]'],
|
|
'trades': bt._results['# Trades'],
|
|
})
|
|
|
|
del bt
|
|
|
|
e = int(time.time() - start_time)
|
|
print('(완료) 조합 지표 개수 :', idx, t_time, '{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))
|
|
print(datetime.now())
|
|
|
|
|
|
# multi Treading - fackage
|
|
def simulrating_by_item_fackage(item, data, t_time):
|
|
global top_profit
|
|
global top_win_rate
|
|
global start_time
|
|
global base_indicators
|
|
global signal_indicators
|
|
global cash
|
|
global commission
|
|
|
|
filtered_signal_indicators = []
|
|
|
|
# 시그널 지표 필터링 완료 : 00:02:36
|
|
for indicator in signal_indicators:
|
|
for profit in profit_arr:
|
|
for loss in loss_arr:
|
|
|
|
res = backtest_run(
|
|
data,
|
|
StrategyCandlePattern,
|
|
indicators=indicator,
|
|
up_target=float(profit),
|
|
down_target=float(loss),
|
|
cash=cash,
|
|
commission=commission
|
|
)
|
|
|
|
# 수익 및 거래 수 제한
|
|
if res['Return [%]'] > 15 and res['# Trades'] > 5:
|
|
if indicator not in filtered_signal_indicators:
|
|
filtered_signal_indicators.append(indicator)
|
|
|
|
if res['Return [%]'] > top_profit:
|
|
print('-' * 60)
|
|
print('시간봉 :', t_time)
|
|
print('지표 조합 개수 :', 1)
|
|
print('지표 :', StrategyCandlePattern.use_indicators)
|
|
print("적용된 스탑프로핏 : %0.2f%%" % profit)
|
|
print("적용된 스탑로스 : %0.2f%%" % loss)
|
|
print("총 수익률 : %0.2f%%" % res['Return [%]'])
|
|
print("최종 금액 : %0.2f" % res['Equity Final [$]'])
|
|
print("거래 수 :", res['# Trades'])
|
|
print('-' * 60)
|
|
# bt.plot()
|
|
|
|
top_profit = res['Return [%]']
|
|
|
|
best_pattern_arr.append({
|
|
't_time': t_time,
|
|
'indicators': [indicator],
|
|
'profit': profit,
|
|
'loss': loss,
|
|
'return': res['Return [%]'],
|
|
'trades': res['# Trades'],
|
|
})
|
|
|
|
del res
|
|
|
|
e = int(time.time() - start_time)
|
|
print('시그널 지표 필터링 완료 :', '{:02d}:{:02d}:{:02d}'.format(e // 3600, (e % 3600 // 60), e % 60))
|
|
print('지표 총합 :', len(filtered_signal_indicators) + len(base_indicators))
|
|
print('필터 지표 리스트', filtered_signal_indicators)
|
|
|
|
# 02:56
|
|
sys.exit(1)
|
|
|
|
all_indicators = filtered_signal_indicators[::-1] + base_indicators
|
|
|
|
joined = []
|
|
for idx in range(2, 3):
|
|
|
|
# for idx in range(2, 5):
|
|
# simulrating_by_item(item, data, all_indicators, idx, t_time)
|
|
|
|
_p = Process(target=simulrating_by_item, args=(item, data, all_indicators, idx, t_time,))
|
|
_p.start()
|
|
joined.append(_p)
|
|
|
|
# item_thread = Thread(target=simulrating_by_item, args=(item, data, all_indicators, idx, t_time,))
|
|
# item_thread.start()
|
|
|
|
# with multiprocessing.Pool(processes=psutil.cpu_count(logical=False)) as pool:
|
|
# pool = Pool(processes=4)
|
|
# func = simulrating_by_item(item, data, all_indicators, idx, t_time)
|
|
# pool.map(func)
|
|
|
|
# for _p in joined:
|
|
# _p.join()
|
|
|
|
del item, data, all_indicators, idx, t_time
|
|
|
|
|
|
# multi Treading - time
|
|
def simulrating_by_time(item, t_time):
|
|
'''
|
|
"day": "24H",
|
|
"hour12": "12H",
|
|
"hour6": "06H",
|
|
"hour": "01H",
|
|
"minute30": "30M",
|
|
"minute10": "10M",
|
|
"minute5": "05M",
|
|
"minute3": "03M",
|
|
'''
|
|
df = pybithumb.get_ohlcv(item, t_time) # params : 종목, 시간
|
|
|
|
# 최근 두달 데이터 = 실질
|
|
if t_time == 'hour':
|
|
df = df[-1600:]
|
|
elif t_time == 'hour6':
|
|
df = df[-266:] # 최근 두달 데이터 = 실질
|
|
elif t_time == 'hour12':
|
|
df = df[-133:] # 최근 두달 데이터 = 실질
|
|
elif t_time == 'day':
|
|
df = df[-85:] # 최근 두달 데이터 = 실질
|
|
|
|
data_columns_init(df)
|
|
data = df
|
|
|
|
simulrating_by_item_fackage(item, data, t_time)
|
|
|
|
|
|
# - 반복문 만들기
|
|
# 단일 지표 필터링 반복문(스톱 로스/프로핏) => 완료
|
|
# 스톱로스, 스톱프로핏 반복문 => 완료
|
|
# 지표 조합 반복문 => 완료
|
|
# 시간봉별 반복문 => 멀티스레딩으로 진행중
|
|
|
|
# 1시간, 4시간, 6시간, 12시간 봉, 일봉 => 5개
|
|
# 멀티스레딩으로 구현 => 시간별, 조합 개수별 => 2, 3, 4, 5, 6, 7
|
|
# 멀티 프로세싱으로 구현 => 멀티 스레드와 속도비교
|
|
# 멀티 프로세싱 구현 => 완료
|
|
# 싸이썬 활용
|
|
# 위 성능 테스트 후 저조할 경우 랜덤워크로 진행.
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# freeze_support()
|
|
|
|
print('Started Simulating.')
|
|
|
|
for t_time in ['hour', 'hour6', 'hour12', 'day']:
|
|
simulrating_by_time('BTC', t_time)
|
|
|
|
break
|
|
|
|
# p = Process(target=simulrating_by_time, args=('BTC', t_time,))
|
|
# p.start()
|
|
# p.join() # sync
|
|
|
|
# thread = Thread(target=simulrating_by_time, args=('BTC', t_time,))
|
|
# thread.start()
|
|
# thread.join() # 동기
|
|
|
|
|
|
|
|
|
|
|