from pyti import chande_momentum_oscillator import talib, numpy, math from signal_helper import * from trade.candle import CandlePatterns def get_indicators_values(t_data, indicators): r_data = pd.DataFrame() date = t_data.Volume # for test close = t_data.Close low = t_data.Low high = t_data.High open = t_data.Open volume = t_data.Volume cp = CandlePatterns() _positive_patterns = cp.get_long_patterns() _negative_patterns = cp.get_short_patterns() _fence_patterns = cp.get_fence_patterns() for p in indicators: indicator_info = None indicator = None values = None f = None # data = [] data = [None] * len(close) indicator, values = list(p.items())[0] if type(values) == int: indicator_info = indicator +"_"+ str(values) elif type(values) == list: indicator_info = indicator+"_"+"_".join(map(str, values)) if indicator != 'DI' and hasattr(talib, indicator): f = getattr(talib, indicator) if indicator is 'CDLPTN': is_trade = None for i in range(0, len(close)): if t_data.Candle_pattern[i] is None: continue pattern, value = list(t_data.Candle_pattern[i].items())[0] if pattern in _fence_patterns: # 중립 패턴 is_trade = is_trade_fence_pattern(pattern, value) elif pattern in _positive_patterns: # 매수 패턴 is_trade = True elif pattern in _negative_patterns: # 매도 패턴 is_trade = False data[i] = is_trade # 보조지표 추가 시작 elif indicator is 'STOCH': # 주도 지표 slowk, slowd = f(high, low, close, fastk_period=values[0], slowk_period=values[1], slowd_period=values[2]) start = 1 + numpy.isnan(slowk).sum() is_trade = None for i in range(start, len(slowk)): t_d = [] if crossover(slowk[i], slowk[i - 1], slowd[i], slowd[i - 1]) and slowd[i] < 50: is_trade = True elif crossover(slowd[i], slowd[i - 1], slowk[i], slowk[i - 1]) and slowd[i] > 50: is_trade = False data[i] = is_trade elif indicator is 'ADX' or indicator is 'ADXR': # 베이스 지표 res_arr = f(high, low, close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() for i in range(start, len(res_arr)): t_d = [] if res_arr[i] < 13: t_d.append(True) elif res_arr[i] > 45: t_d.append(False) data[i] = data[i] + t_d elif indicator is 'DI': # 주도 지표 res_arr_plus = talib.PLUS_DI(high, low, close, timeperiod=values) res_arr_minus = talib.MINUS_DI(high, low, close, timeperiod=values) start = 1 + numpy.isnan(res_arr_plus).sum() is_trade = None for i in range(start, len(res_arr_plus)): t_d = [] if crossover(res_arr_plus[i], res_arr_plus[i - 1], res_arr_minus[i], res_arr_minus[i - 1]): is_trade = True elif crossover(res_arr_minus[i], res_arr_minus[i - 1], res_arr_plus[i], res_arr_plus[i - 1]): is_trade = False data[i] = is_trade elif indicator is 'APO': # 주도 지표 res_arr = f(close, fastperiod=values[0], slowperiod=values[1], matype=0) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] if res_arr[i] > 0: is_trade = True elif res_arr[i] < 0: is_trade = False data[i] = is_trade if indicator is 'AROON': # 주도 지표 => 추격 aroondown, aroonup = f(high, low, timeperiod=values) start = 1 + numpy.isnan(aroondown).sum() is_trade = None for i in range(start, len(aroondown)): t_d = [] if crossover(aroonup[i], aroonup[i - 1], aroondown[i], aroondown[i - 1]): is_trade = True elif crossover(aroondown[i], aroondown[i - 1], aroonup[i], aroonup[i - 1]): is_trade = False data[i] = is_trade elif indicator is 'AROONOSC': # 베이스 지표 - 추세 res_arr = f(high, low, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] # 0 초과 상승추세, 0 미만 하락 추세 if res_arr[i] > 0 and res_arr[i - 1] < 0: is_trade = True elif res_arr[i] < 0 and res_arr[i - 1] > 0: is_trade = False data[i] = is_trade elif indicator is 'BOP': # 베이스 지표 res_arr = f(open, high, low, close) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] if res_arr[i] > 0 and res_arr[i - 1] < 0: is_trade = True elif res_arr[i] < 0 and res_arr[i - 1] > 0: is_trade = False data[i] = is_trade elif indicator is 'CCI': # 베이스 지표 / 추세 res_arr = f(close, close, close, timeperiod=values) # res_arr = f(high, low, close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] # 베이스 if res_arr[i] < -100: # 과매도 -100 / 과매수 +100 is_trade = True elif res_arr[i] > 100: is_trade = False data[i] = is_trade elif indicator is 'CMO': # 베이스 지표 / 추세 => 수치 불일치 # res_arr = f(close, timeperiod=values) res_arr = chande_momentum_oscillator.chande_momentum_oscillator(close, values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] if res_arr[i] > 0: # 과매도 -100 / 과매수 +100 is_trade = True elif res_arr[i] < 0: is_trade = False data[i] = is_trade elif indicator is 'MACD': # 주도 지표 macd, macdsignal, macdhist = f(close, fastperiod=values[0], slowperiod=values[1], signalperiod=values[2]) start = 1 + numpy.isnan(macd).sum() is_trade = None for i in range(start, len(macd)): t_d = [] if crossover(macd[i], macd[i - 1], macdsignal[i], macdsignal[i - 1]): is_trade = True elif crossover(macdsignal[i], macdsignal[i - 1], macd[i], macd[i - 1]): is_trade = False data[i] = is_trade elif indicator is 'MACDFIX': # 주도 지표 macd, macdsignal, macdhist = f(close, signalperiod=values) start = 1 + numpy.isnan(macd).sum() is_trade = None for i in range(start, len(macd)): t_d = [] if crossover(macd[i], macd[i - 1], macdsignal[i], macdsignal[i - 1]): is_trade = True elif crossover(macdsignal[i], macdsignal[i - 1], macd[i], macd[i - 1]): is_trade = False data[i] = is_trade elif indicator is 'MFI': # 베이스 지표 / 역추세 res_arr = f(close, close, close, volume, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] # 베이스 if res_arr[i] > 20 and res_arr[i - 1] < 20: is_trade = True elif res_arr[i] > 80 and res_arr[i - 1] < 80: is_trade = False data[i] = is_trade elif indicator is 'MOM': # 베이스 지표 / 추세 res_arr = f(close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] # 베이스 if res_arr[i] > 0 and res_arr[i - 1] < 0: is_trade = True elif res_arr[i] < 0 and res_arr[i - 1] > 0: is_trade = False data[i] = is_trade elif indicator is 'PPO': # 주도 지표 ppo = f(close, fastperiod=values[0], slowperiod=values[1], matype=1) ppo_slow = moving_average(ppo, values[2]) start = 1 + numpy.isnan(ppo_slow).sum() is_trade = None for i in range(start, len(ppo)): t_d = [] if crossover(ppo[i], ppo[i - 1], ppo_slow[i], ppo_slow[i - 1]): is_trade = True elif crossover(ppo_slow[i], ppo_slow[i - 1], ppo[i], ppo[i - 1]): is_trade = False data[i] = is_trade elif indicator is 'ROC': # 베이스 지표 / 추세 res_arr = f(close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] if res_arr[i] > 0 and res_arr[i - 1] < 0: is_trade = True elif res_arr[i] < 0 and res_arr[i - 1] > 0: is_trade = False data[i] = is_trade elif indicator is 'ROCP' or indicator is 'ROCR' or indicator is 'ROCR100': # 베이스 지표 / 추세 res_arr = f(close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() for i in range(start, len(res_arr)): t_d = [] # 베이스 if res_arr[i] > 0: t_d.append(True) elif res_arr[i] < 0: t_d.append(False) data[i] = data[i] + t_d elif indicator is 'STOCHF': # 주도 지표 fastk, fastd = f(high, low, close, fastk_period=values[0], fastd_period=values[1], fastd_matype=0) start = 1 + numpy.isnan(fastk).sum() is_trade = None for i in range(start, len(fastk)): t_d = [] # 높은 거래 빈도로 인해 매매조건 추가 if fastd[i] < 40 and crossover(fastk[i], fastk[i - 1], fastd[i], fastd[i - 1]): is_trade = True elif fastd[i] > 60 and crossover(fastd[i], fastd[i - 1], fastk[i], fastk[i - 1]): is_trade = False data[i] = is_trade elif indicator is 'STOCHRSI': # 주도 지표 rsi_k, rsi_d = stoch_rsi(close, values[0], values[1], values[2]) start = 1 + numpy.isnan(rsi_d).sum() is_trade = None for i in range(start, len(rsi_d)): t_d = [] if rsi_k[i] < 25 and crossover(rsi_k[i], rsi_k[i - 1], rsi_d[i], rsi_d[i - 1]): is_trade = True elif rsi_k[i] > 75 and crossover(rsi_d[i], rsi_d[i - 1], rsi_k[i], rsi_k[i - 1]): is_trade = False data[i] = is_trade elif indicator is 'TRIX': # 베이스 지표 / 역추세 => 매수/매도 시점 괜찮다 trix = f(close, timeperiod=values[0]) trix_signal = moving_average(trix, values[1]) start = 1 + numpy.isnan(trix_signal).sum() is_trade = None for i in range(start, len(trix_signal)): t_d = [] if crossover(trix[i], trix[i - 1], trix_signal[i], trix_signal[i - 1]): is_trade = True elif crossover(trix_signal[i], trix_signal[i - 1], trix[i], trix[i - 1]): is_trade = False data[i] = is_trade elif indicator is 'ULTOSC': # 주도 지표 res_arr = f(high, low, close, timeperiod1=values[0], timeperiod2=values[1], timeperiod3=values[2]) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] if res_arr[i] < 30: is_trade = True elif res_arr[i] > 70: is_trade = False data[i] = is_trade elif indicator is 'WILLR': # 베이스 지표 => 강세장에서 효과를 발휘 res_arr = f(high, low, close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] # print(date[i], res_arr[i]) if res_arr[i] > -20: is_trade = True elif res_arr[i] < -80: is_trade = False data[i] = is_trade elif indicator is 'BBANDS': # 베이스 지표 / 역추세 upperband, middleband, lowerband = f(close, timeperiod=values[0], nbdevup=values[1], nbdevdn=values[1], matype=0) start = 1 + numpy.isnan(upperband).sum() is_trade = None for i in range(start, len(upperband)): t_d = [] if high[i] > upperband[i] and upperband[i] > upperband[i - 1] and low[i] > middleband[i]: is_trade = True elif low[i] < lowerband[i] and lowerband[i] < lowerband[i - 1] and high[i] < middleband[i]: is_trade = False data[i] = is_trade elif indicator is 'EMA' or \ indicator is 'DEMA' or \ indicator is 'MA' or \ indicator is 'SMA': # 주도 지표 / 추세 res_arr = f(close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] if close[i] > res_arr[i]: is_trade = True elif close[i] < res_arr[i]: is_trade = False data[i] = is_trade elif indicator is 'MAMA': # 주도 지표 / 추세 mama, fama = f(close, fastlimit=values[0], slowlimit=values[1]) start = 1 + numpy.isnan(mama).sum() is_trade = None for i in range(start, len(mama)): t_d = [] if mama[i] > fama[i]: is_trade = True elif mama[i] < fama[i]: is_trade = False data[i] = is_trade elif indicator is 'MIDPOINT': # 주도 지표 => 추세 res_arr = f(close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() for i in range(start, len(res_arr)): t_d = [] if close[i] > res_arr[i]: t_d.append(True) elif close[i] < res_arr[i]: t_d.append(False) data[i] = data[i] + t_d elif indicator is 'MIDPRICE': # 주도 지표 => 추세 res_arr = f(high, low, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() for i in range(start, len(res_arr)): t_d = [] if close[i] > res_arr[i]: t_d.append(True) elif close[i] < res_arr[i]: t_d.append(False) data[i] = data[i] + t_d elif indicator is 'SAR': # 주도 지표 => 역추세 res_arr = f(high, low, acceleration=values[0], maximum=values[1]) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] if close[i] > res_arr[i] and close[i - 1] < res_arr[i - 1]: is_trade = True elif res_arr[i] > close[i] and res_arr[i - 1] < close[i - 1]: is_trade = False data[i] = is_trade elif indicator is 'T3': # indicator is 'WMA': # 주도 지표 => 추세 long = f(close, timeperiod=values[0]) short = f(close, timeperiod=values[1]) start = 1 + numpy.isnan(long).sum() is_trade = None for i in range(start, len(long)): t_d = [] if short[i] > long[i]: is_trade = True elif short[i] < long[i]: is_trade = False data[i] = is_trade elif indicator is 'TRIMA' or indicator is 'WMA': # 주도 지표 => 추세 res_arr = f(close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] if close[i] > res_arr[i]: is_trade = True elif close[i] < res_arr[i]: is_trade = False data[i] = is_trade elif indicator is 'AD': # 베이스 지표 - 거래량 res_arr = f(high, low, close, volume) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] # 가격-거래량 반비례 => 추세 반전 if close[i] > close[i - 1] and res_arr[i] < res_arr[i - 1]: is_trade = False elif close[i] < close[i - 1] and res_arr[i] > res_arr[i - 1]: is_trade = False data[i] = is_trade elif indicator is 'ADOSC_DIV': # 베이스 지표 - 거래량 res_arr = talib.ADOSC(high, low, close, volume, fastperiod=values[0], slowperiod=values[1]) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] is_divergence = is_divergence_v2(i, high, low, res_arr, date) if is_divergence is True: is_trade = True elif is_divergence is False: is_trade = False data[i] = is_trade elif indicator is 'DMI': # 주도 지표 - 추세(추매) adx = talib.ADX(high, low, close, timeperiod=values) plus_di = talib.PLUS_DI(high, low, close, timeperiod=values) minus_di = talib.MINUS_DI(high, low, close, timeperiod=values) start = 1 + numpy.isnan(adx).sum() is_trade = None for i in range(start, len(adx)): t_d = [] if adx[i] > adx[i - 1]: if plus_di[i] > minus_di[i] and adx[i] > minus_di[i]: is_trade = True elif minus_di[i] > minus_di[i - 1]: is_trade = False data[i] = is_trade elif indicator is 'OBV': # 베이스 지표 / 역추세 res_arr = f(close, volume) cdl_cnt = 20 start = 1 + numpy.isnan(res_arr).sum() if start < cdl_cnt: start = cdl_cnt for i in range(start, len(res_arr)): t_d = [] # 고가 갱신 시 매도 / 저가 갱신 시 매수 if res_arr[i] > max(res_arr[i - cdl_cnt:i]): t_d.append(False) elif res_arr[i] < min(res_arr[i - cdl_cnt:i]): t_d.append(True) data[i] = is_trade elif indicator is 'RSI': # 베이스 지표 res_arr = f(close, values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] if res_arr[i] < 30: is_trade = True elif res_arr[i] > 70: is_trade = False data[i] = is_trade elif indicator is 'RSI_DIV': # 주도 지표 / 역추세 - 다이버전스 f = getattr(talib, 'RSI') res_arr = f(close, values) cdl_cnt = 100 start = 1 + numpy.isnan(res_arr).sum() is_trade = None if start < cdl_cnt: start = cdl_cnt for i in range(start, len(res_arr)): t_d = [] is_divergence = is_divergence_v2(i, high, low, res_arr, date) if is_divergence is True and res_arr[i - 1] < 50: is_trade = True elif is_divergence is False and res_arr[i - 1] > 50: is_trade = False data[i] = is_trade if indicator is 'OBV_DIV': f = getattr(talib, 'OBV') res_arr = f(close, volume) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] i = i - 1 is_divergence = is_divergence_v2(i, high, low, res_arr, date) if is_divergence is True: is_trade = True elif is_divergence is False: is_trade = False data[i] = is_trade if indicator is 'WILLR_DIV': f = getattr(talib, 'WILLR') res_arr = f(high, low, close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] i = i - 1 is_divergence = is_divergence_v2(i, high, low, res_arr, date) if is_divergence is True and res_arr[i - 1] < -50: is_trade = True elif is_divergence is False and res_arr[i - 1] > -50: is_trade = False data[i] = is_trade if indicator is 'ADX_DIV': f = getattr(talib, 'ADX') res_arr = f(high, low, close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] i = i - 1 is_divergence = is_divergence_v2(i, high, low, res_arr, date) if is_divergence is True: is_trade = True elif is_divergence is False: is_trade = False data[i] = is_trade if indicator is 'BOP_DIV': f = getattr(talib, 'BOP') res_arr = f(open, high, low, close) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] i = i - 1 is_divergence = is_divergence_v2(i, high, low, res_arr, date) if is_divergence is True: is_trade = True elif is_divergence is False: is_trade = False data[i] = is_trade if indicator is 'CCI_DIV': f = getattr(talib, 'CCI') res_arr = f(high, low, close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] i = i - 1 is_divergence = is_divergence_v2(i, high, low, res_arr, date) if is_divergence is True and res_arr[i - 1] < -100: is_trade = True elif is_divergence is False and res_arr[i - 1] > 100: is_trade = False data[i] = is_trade if indicator is 'MFI_DIV': f = getattr(talib, 'MFI') res_arr = f(close, close, close, volume, timeperiod=values) # res_arr = f(high, low, close, volume, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] i = i - 1 is_divergence = is_divergence_v2(i, high, low, res_arr, date) # is_divergence = is_divergence_v3(i, close, res_arr, date) if is_divergence is True and res_arr[i - 1]: is_trade = True elif is_divergence is False and res_arr[i - 1]: is_trade = False data[i] = is_trade ''' CMO 지표 수치 불일치 ''' if indicator is 'CMO_DIV': res_arr = chande_momentum_oscillator.chande_momentum_oscillator(close, 9) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] i = i - 1 is_divergence = is_divergence_v2(i, high, low, res_arr, date) if is_divergence is True and res_arr[i - 1] < 0: is_trade = True elif is_divergence is False and res_arr[i - 1] > 0: is_trade = False data[i] = is_trade if indicator is 'MOM_DIV': f = getattr(talib, 'MOM') res_arr = f(close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] i = i - 1 is_divergence = is_divergence_v2(i, high, low, res_arr, date) if is_divergence is True: # and res_arr[i-1] < 0: is_trade = True elif is_divergence is False: # and res_arr[i-1] > 0: is_trade = False data[i] = is_trade if indicator is 'ROC_DIV': f = getattr(talib, 'ROC') res_arr = f(close, timeperiod=values) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] i = i - 1 is_divergence = is_divergence_v2(i, high, low, res_arr, date) if is_divergence is True: # and round(res_arr[i-1]) < 0: is_trade = True elif is_divergence is False: # and round(res_arr[i-1]) > 0: is_trade = False data[i] = is_trade if indicator is 'STOCH_DIV': f = getattr(talib, 'STOCH') # res_arr, slowd = f(high, low, close, slowk, res_arr = f(high, low, close, fastk_period=values[0], slowk_period=values[1], slowd_period=values[2]) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] i = i - 1 is_divergence = is_divergence_v2(i, high, low, res_arr, date) if is_divergence is True: # and round(res_arr[i-1]) < 0: is_trade = True elif is_divergence is False: # and round(res_arr[i-1]) > 0: is_trade = False data[i] = is_trade if indicator is 'STOCHRSI_DIV': rsi_k, res_arr = stoch_rsi(close, values[0], values[1], values[2]) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] i = i - 1 is_divergence = is_divergence_v3(i, close, res_arr, date) if is_divergence is True: is_trade = True elif is_divergence is False: is_trade = False data[i] = is_trade elif indicator is 'ULTOSC_DIV': # 주도 지표 res_arr = talib.ULTOSC(high, low, close, timeperiod1=values[0], timeperiod2=values[1], timeperiod3=values[2]) start = 1 + numpy.isnan(res_arr).sum() is_trade = None for i in range(start, len(res_arr)): t_d = [] is_divergence = is_divergence_v2(i, high, low, res_arr, date) if is_divergence is True: # and round(res_arr[i-1]) < 0: is_trade = True elif is_divergence is False: # and round(res_arr[i-1]) > 0: is_trade = False data[i] = is_trade elif indicator == 'HEI': # heikenashi df = pd.DataFrame( {'open': open, 'high': high, 'low': low, 'close': close, 'volume': volume}, ).copy() res_arr = heikin_ashi(df) is_trade = None for i in range(1, len(res_arr)): t_d = [] if res_arr.loc[i]['close'] > res_arr.loc[i]['open'] and \ res_arr.loc[i - 1]['open'] > res_arr.loc[i - 1]['close']: is_trade = True elif res_arr.loc[i]['open'] > res_arr.loc[i]['close'] and \ res_arr.loc[i - 1]['close'] > res_arr.loc[i - 1]['open']: is_trade = False t_d.append(is_trade) data[i] = data[i] + t_d r_data[indicator_info] = data return r_data